Human hepatocytes were transplanted into urokinase-type plasminogen activator-transgenic SCID mice (uPA/SCID mice), which are immunodeficient and undergo liver failure. The transplanted cells were characterized in terms of their in vivo growth potential and functions. The human hepatocytes progressively repopulated the murine host liver. However, the recipients died when the replacement index (RI) of the human hepatocytes exceeded 50%. The hosts (chimeric mice) survived at RI >50% when treated with a drug that has anti-human complement factor activity, and these mice developed livers with RI values as high as 96%. In total, 36 chimeric mice were generated, and the rate of successful engraftment was as high as 92%. The yield of chimeric mice with RI >70% was 32%. The human hepatocytes in the murine host liver expressed mRNAs for a variety of human cytochrome P450 (hCYP) subtypes, in a manner that was similar to the donor liver. The mRNAs for hCYP3A4 and hCYP1A1/2 were induced in the liver in a CYP type-specific manner when the mice were treated with rifampicin and 3-methylcholanthrene, respectively. These results indicate that human hepatocytes that propagate in mice retain their normal pharmacological responses. We conclude that the chimeric mouse developed in the present study is a useful model for assessing the functions and pharmacological responses of human hepatocytes.
Estrogen receptor α (ERα) is a ligand-inducible transcription factor that mediates the biological effects of estrogens and antiestrogens. Many point mutations in the human ERα gene have been reported to be associated with breast cancer, endometrial cancer, and psychiatric diseases. However, functional analyses for most mutants with amino acid changes are still lacking. In the present study, to investigate the effects of point mutations on the function, gel-shift assays and luciferase assays were performed for eight kinds of mutated ERα proteins, including a single nucleotide change of C207G (N69K), G478T (G160C), T887C (L296P), A908G (K303R), C926T (S309F), A1058T (E353V), A1186G (M396V) and G1231deletion (411fsX7). The mutated ERα expression plasmids were constructed by sitedirected mutagenesis. With gel-shift assays using in vitro translated ERα proteins, binding to the consensus estrogen response element (ERE) was observed for the mutated ERα proteins except ERα (G160C) and ERα (411fsX7), the binding of which was comparable with that of the wild type. Western blot analyses showed that ERα (G160C) could not be efficiently translated with the in vitro transcription/translation system and that ERα (411fsX7) produced a truncated protein. To investigate the transactivation potency, wild-type or mutated ERα expression plasmids were cotransfected with pGL3-3EREc38 reporter plasmid into human breast adenocarcinoma MDA-MB-435 cells. The concentration-response curves (10 pM -100 nM E2) of the mutant ERα proteins except ERα (E353V) and ERα (411fsX7) were similar to that of wild-type ERα. However, at a low level of E2 (100 pM), the mutants ERα (N69K), ERα (L296P), ERα (S309F), and ERα (M396V) showed a significant decrease of transactivation compared with that of the wild-type ERα. The mutants ERα (E353V) and ERα (411fsX7) did not show responsiveness to E2 and antiestrogens, 4-hydroxytamoxifen (4OHT) and ICI 182,780. The mutant ERα (S309F) showed decreased responsiveness for the antiestrogenicity of 4OHT. In conclusion, we found that some of the naturally occurring human ERα mutants with amino acid changes may have an altered responsiveness to estrogen and antiestrogens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.