Objective. This work describes an approach for producing physical anthropomorphic breast phantoms from clinical patient data using three-dimensional (3D) fused-deposition modelling (FDM) printing. Approach. The source of the anthropomorphic model was a clinical Magnetic Resonance Imaging (MRI) patient image set, which was segmented slice by slice into adipose and glandular tissues, skin and tumour formations; thus obtaining a four component computational breast model. The segmented tissues were mapped to specific Hounsfield Units (HU) values, which were derived from clinical breast Computed Tomography (CT) data. The obtained computational model was used as a template for producing a physical anthropomorphic breast phantom using 3D printing. FDM technology with only one polylactic acid filament was used. The physical breast phantom was scanned at Siemens SOMATOM Definition CT. Quantitative and qualitative evaluation were carried out to assess the clinical realism of CT slices of the physical breast phantom. Main results. The comparison between selected slices from the computational breast phantom and CT slices of the physical breast phantom shows similar visual x-ray appearance of the four breast tissue structures: adipose, glandular, tumour and skin. The results from the task-based evaluation, which involved three radiologists, showed a high degree of realistic clinical radiological appearance of the modelled breast components. Measured HU values of the printed structures are within the range of HU values used in the computational phantom. Moreover, measured physical parameters of the breast phantom, such as weight and linear dimensions, agree very well with the corresponding ones of the computational breast models. Significance. The presented approach, based on a single FDM material, was found suitable for manufacturing of a physical breast phantom, which mimics well the 3D spatial distribution of the different breast tissues and their x-ray absorption properties. As such, it could be successfully exploited in advanced x-ray breast imaging research applications.
malignant pathology and by obtaining more tissue sampling and/or a second opinion from a consulting pathologist in none diagnostic, highly suspected colon lesion. Besides the role as a diagnostic tool in CRC, colonoscopy identifies subsequent lesions at the time of surgery, which is called preoperative endoscopic marking. It is performed through metallic clip placement and endoscopic tattooing. The colonoscopic equipment consists of camera and four-way tip controls [43]. The camera can produce images of high-definition quality. The four way tip controls include (1) examination of a found patch to confirm an abnormal growth; (2) insufflating air to dilate the lumen for mucosal inspection and relieving air after examination, (3) irrigating a suspected region; (4) suctioning to avoid missing lesions under fluid, and (5) inserting biopsy devices. The patient must undergo bowel preparation-taking clear liquid diet and ingesting laxative solutions for colon cleansing the day before examination. Sedation is needed to relieve the discomfort during the procedure, but it increases the costs. The complication of sedation are different cardiac disturbances such as hypotension, arrhythmias,oxygen desaturation, and others. The preparation with purgatives may cause abdominal discomfort, nausea, and other symptoms. The colonoscopy continues from 30 minutes to an hour. The risk during colonoscopy consists in colonic perforation in 0,1 % of cases. Colonoscopy fails to visualize the entire colon in 10-15% and it may miss up to 10-20% of polyps fewer than 10 mm. Colonoscopy is golden standard for diagnosing of CRC but there are more symptoms which could be evaluated and appreciated by endoscopic examination, for example-abdominal pain, unexplained gastrointestinal bleeding, diarrhea of unexplained origin, chronic inflammatory bowel disease, etc. It is also the most common interventional modality for polypectomy, hemostasis, balloon dilation, foreign body removal, palliative treatment of neoplasms, etc. Colonoscopy could be the best screening option for all none specific underdiagnosed gastrointestinal symptoms. Colonoscopy removes all detected polyps, regardless of histology type-adenomatous or hyperplastic. Not all of them must undergo resection. The polyps vary in size and polyps under 5 mm are not detected endoscopic. For detection of polyps smaller than 5 mm the virtual colonospcopy is the alternative to the conventional colonoscopy.
In a chapter about rectal cancer there is content about rectal anatomy in relation to magnet-resonanse imaging and TME- surgery (total mesorectal excision). Secondly there is content about imaging methods used in diagnosis and follow-up of rectal cancer. Very important topic is concerning the novel imaging strategies in surgical and radiotherapy planning in the era of individual oncologic approach to the patient. At last there is detailed desctiption and metaanalysis of imaging strategies concerning neoadjuvant and adjuvant radiotherapy and chemotherapy for rectal cancer patients. All imaging markers correspond to substantial oncologic parameters such as survival rates. The connecting bridge is magnet-resonance imaging.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.