The microsomal ethanol oxidizing system comprises an ethanol-inducible cytochrome P-4502E1, but the involvement of other P-450s has also been suggested. In our study, human CYP2E1, CYP1A2, and CYP3A4 were heterologously expressed in HepG2 cells, and their ethanol oxidation was assessed using a corresponding selective inhibitor: all three P-450 isoenzymes metabolized ethanol. Selective inhibitors-4-methylpyrazole (CYP2E1), furafylline (CYP1A2), and troleandomycin (CYP3A4)-also decreased microsomal ethanol oxidation in the livers of 18 organ donors. The P-450-dependent ethanol oxidizing activities correlated significantly with those of the specific monooxygenases and the immunochemically determined microsomal content of the respective P-450. The mean CYP2E1-dependent ethanol oxidation in human liver microsomes [1.41+/-0.11 nmol min(-1) (mg protein)(-1)] was twice that of CYP1A2 (0.61+/-0.07) or CYP3A4 (0.73+/-0.11) (p < 0.05). Furthermore, CYP2E1 had the highest (p < 0.05) specific activity [28+/-2 nmol min(-1) (nmol CYP2E1)(-1) versus 17+/-3 nmol min(-1) (nmol CYP1A2)(-1), and 12+/-2 nmol min(-1) (CYP3A4)(-1), respectively]. Thus, in human liver microsomes, CYP2E1 plays the major role. However, CYP1A2 and CYP3A4 contribute significantly to microsomal ethanol oxidation and may, therefore, also be involved in the pathogenesis of alcoholic liver disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.