Introduction Drug delivery systems (DDSs) are important for effective, safe, and convenient administration of drugs. pH- and ion-responsive polymers have been widely employed in DDS for site-specific drug release due to their abilities to exploit specific pH- or ion-gradients in the human body. Areas covered Having pH-sensitivity, cationic polymers can mask the taste of drugs and release drugs in the stomach by responding to gastric low pH. Anionic polymers responsive to intestinal high pH are used for preventing gastric degradation of drug, colon drug delivery and achieving high bioavailability of weak basic drugs. Tumor-targeted DDSs have been developed based on polymers with imidazole groups or poly(β-amino ester) responsive to tumoral low pH. Polymers with pH-sensitive chemical linkages, such as hydrazone, acetal, ortho ester and vinyl ester, pH-sensitive cell-penetrating peptides and cationic polymers undergoing pH-dependent protonation have been studied to utilize the pH gradient along the endocytic pathway for intracellular drug delivery. As ion-sensitive polymers, ion-exchange resins are frequently used for taste-masking, counterion-responsive drug release and sustained drug release. Polymers responding to ions in the saliva and gastrointestinal fluids are also used for controlled drug release in oral drug formulations. Expert opinion Stimuli-responsive DDSs are important for achieving site-specific and controlled drug release; however, intraindividual, interindividual and intercellular variations of pH should be considered when designing DDSs or drug products. Combination of polymers and other components, and deeper understanding of human physiology are important for development of pH- and ion-sensitive polymeric DDS products for patients.
Ovarian cancer is the most lethal gynecological malignancy, characterized by a high rate of chemoresistance. Current treatment strategies for ovarian cancer focus on novel drug combinations of cytotoxic agents and molecular targeted agents or novel drug delivery strategies that often involve intraperitoneal (IP) injection. Poly(ethylene glycol)-block-poly(ε-caprolactone) (PEG-b-PCL) micelles were loaded with paclitaxel (cytotoxic agent), cyclopamine (hedgehog inhibitor), and gossypol (Bcl-2 inhibitor). After physicochemical studies focusing on combination drug solubilization, 3-drug PEG-b-PCL micelles were evaluated in vitro in 2-D and 3-D cell culture and in vivo in xenograft models of ovarian cancer, tracking bioluminescence signals from ES-2 and SKOV3 human ovarian cancer cell lines after IP injection. 3-drug PEG-b-PCL micelles were not significantly more potent in 2-D cell culture in comparison to paclitaxel; however, they disaggregated ES-2 tumor spheroids, whereas single drugs or 2-drug combinations only slowed growth of ES-2 tumor spheroids or had no noticeable effects. In ES-2 and SKOV3 xenograft models, 3-drug PEG-b-PCL micelles had significantly less tumor burden than paclitaxel based on bioluminescence imaging, 3′-deoxy-3′-18F-fluorothymidine (18F-FLT) PET imaging, and overall survival. 18F-FLT-PET images clearly showed that 3-drug PEG-b-PCL micelles dramatically reduce tumor volumes over paclitaxel and vehicle controls. In summary, PEG-b-PCL micelles enable the IP combination drug delivery of paclitaxel, cyclopamine and gossypol, resulting in tumor growth inhibition and prolonged survival over paclitaxel alone. These results validate a novel treatment strategy for ovarian cancer based on drug combinations of cytotoxic agents and molecular targeted agents, delivered concurrently by a nanoscale drug delivery system, e.g. PEG-b-PCL micelles.
Abstract. Drug combinations are common in cancer treatment and are rapidly evolving, moving beyond chemotherapy combinations to combinations of signal transduction inhibitors. For the delivery of drug combinations, i.e., multi-drug delivery, major considerations are synergy, dose regimen (concurrent versus sequential), pharmacokinetics, toxicity, and safety. In this contribution, we review recent research on polymeric micelles for multi-drug delivery in cancer. In concurrent drug delivery, polymeric micelles deliver multi-poorly water-soluble anticancer agents, satisfying strict requirements in solubility, stability, and safety. In sequential drug delivery, polymeric micelles participate in pretreatment strategies that "prime" solid tumors and enhance the penetration of secondarily administered anticancer agent or nanocarrier. The improved delivery of multiple poorly water-soluble anticancer agents by polymeric micelles via concurrent or sequential regimens offers novel and interesting strategies for drug combinations in cancer treatment.
Concurrent delivery of multiple poorly water-soluble anticancer drugs has been a great challenge due to the toxicities exerted by different surfactants or organic solvents used in solubilizing individual drugs. We previously found that poly(ethylene glycol)-block-poly(D, L-lactic acid) (PEG-b-PLA) micelles can serve as a safe delivery platform for simultaneous delivery of paclitaxel (PTX), 17-allylamino-17-demethoxygeldanamycin (17-AAG), and rapamycin (RAP) to mice. The high tolerance of this polymeric micelle formulation by mice allowed us to investigate the pharmacokinetics of the 3 co-delivered drugs. In this study, it was shown that 3-in-1 PEG-b-PLA micelle delivering high doses of PTX, 17-AAG, and RAP (60, 60, and 30 mg/kg, respectively) significantly increased the values of the area under the plasma concentration-time curves (AUC) of PTX and RAP in mice compared to the drugs delivered individually, while the pharmacokinetic parameters of 17-AAG were similar in both 3-in-1 and single drug-loaded PEG-b-PLA micelle formulations. Moreover, pharmacokinetic study using 2-in-1 micelles indicated that the augmented AUC value of RAP was due to the co-delivery of 17-AAG, while the increase in AUC of PTX was more likely caused by the co-delivery of RAP. In contrast, when 3-in-1 and single drug-loaded PEG-b-PLA micelles were administrated at modest dose (PTX, 17-AAG, and RAP at 10, 10, and 5 mg/kg, respectively), pharmacokinetic differences of individual drugs between 3-in-1 and single drug formulations were eliminated. These results suggest that 3-in-1 PEG-b-PLA micelles can concurrently deliver PTX, 17-AAG, and RAP without changing the pharmacokinetics of each drug at modest doses, but altered pharmacokinetic profiles emerge when drugs are delivered at higher doses.
PEGylated cationic polymers have been extensively studied for substituting virus as gene delivery vehicles. These polymers can produce water-soluble polyionic complexes (polyplexes) with plasmid DNA (pDNA) and show enhanced stability compared to non-PEGylated polyplexes. However, PEGylation always diminishes the transfection efficiency of polyplexes probably due to poor cellular internalization of the particles and difficulty in releasing the pDNA cargo from the complexes intracellularly for gene expression. As non-ionic surfactants, Pluronic block copolymers have been shown to interact with plasma membrane and promote cellular uptake of various small molecules and biomacromolecules. To evaluate whether Pluronic could improve the transfection efficiency of polyplexes, Pluronic P85- and PEG-based cationomers comprising poly{N-[N-(2-aminoethyl)-2-aminoethyl] aspartamide (P[Asp(DET)]) cationic blocks were synthesized and tested for their transfection ability. In this study, it was demonstrated that although the stability of the PEG-based polyplexes was better than that of the P85-based polyplexes based cationic polymers, the P85-based polyplex could achieve significantly higher transfection than the PEG counterparts. The improvement of gene delivering ability was shown to be correlated with the enhanced cellular internalization of the P85-based polyplexes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.