In this paper, we prove that every contraction-critical 2-connected infinite graph has no vertex of finite degree and contains uncountably many ends. Then, by investigating the distribution of contractible edges in a 2-connected locally finite infinite graph $G$, we show that the closure of the subgraph induced by all the contractible edges in the Freudenthal compactification of $G$ is 2-arc-connected. Finally, we characterize all 2-connected locally finite outerplanar graphs nonisomorphic to $K_3$ as precisely those graphs such that every vertex is incident to exactly two contractible edges as well as those graphs such that every finite bond contains exactly two contractible edges.
One of the most famous open problems in graph theory is the Graceful Tree Conjecture, which states that every finite tree has a graceful labeling. In this paper, we define graceful labelings for countably infinite graphs, and state and verify a Graceful Tree Conjecture for countably infinite trees.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.