Intervertebral disc (IVD) degeneration is one of the major causes of low back pain. The direct and indirect cost of managing back pain posts heavy socioeconomic burden to the society. Improved technologies and techniques together with well documented experiments will benefit the research field by saving effort in doing the optimization in every laboratory and avoiding experiment failure due to incomplete understanding of the procedures. These can accelerate scientific discovery, reduce the sacrifice of animals and enable a more effective use of funding.Nucleus pulposus (NP) is the central part of IVD. Differences in matrix compositions in human NP clinical samples demand different cell isolation protocols for optimal results but there is no clear guide about this to date. Sub-optimal protocols may result in low cell yield, limited reliability of results or even failure of experiments. We experimented different isolation protocols to study different parameters involved and suggested some rules for cell isolation in three main applications: RNA extraction for phenotyping, cell isolation for cell culture, and characterization by flow cytometry.In addition, instead of extracting RNA from isolated cells, extraction of RNA from tissues directly may avoid the change of RNA levels during the cell isolation process.However, extraction of RNA directly from human and large animal IVD tissue is technically challenging due to its tough nature, low cell-to-matrix ratio and high proteoglycan content. Thus we developed a method for RNA extraction from bovine disc tissues by integrating the use of cryosectioning, additional phase separation and high salt precipitation into conventional guanidinium thiocyanate based method. With this method, RNA could be extracted from the NP tissue directly but the concentration was low. A shift toward 270 nm was observed in its UV spectrum which was due to phenol contamination. This caused an overestimation of RNA concentration. Hence we developed a computational method based on UV spectra for correcting the In short, different methods related to IVD research were developed and optimized. With improved methods together with a better understanding of the underlying rationale, researchers can save time and cost in their experiments and reduce experiment failure rate. This will help to accelerate researches. New methods also enable studies which were not feasible in the past.(484 words)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.