[1] The partial crystallization and deliquescence of ammonium sulfate (AS) particles internally mixed with malonic acid (MA), glutaric acid (GA), and succinic acid (SA) were studied. Hygroscopic properties, elastic light scattering, and Raman spectra were measured during water uptake and evaporation of single particles suspended in an electrodynamic balance. AS/MA particles remained partially crystallized at RHs as low as 16%, while AS/GA and AS/SA particles became completely dry at about 30-36% RH and below. Partial deliquescence was observed at intermediate RHs of <10% to 79%, 70% to 80%, and 80% to >90% for the AS/MA, AS/GA, and AS/SA particles, respectively. Solid inclusions in various amounts were in equilibrium with the aqueous solutions. The Raman spectra show solid inclusions of both AS and MA in AS/MA particles, suggesting the heterogeneous crystallization of MA on solid AS. AS was found to deliquesce first at 76% RH in the AS/GA system, followed by GA at 78% RH. In the SA/AS system, AS was observed to dissolve at 80% RH, while SA remained as solid for RH as high as 90%. Comparisons to the thermodynamic model E-AIM demonstrated the necessity to correctly predict the solid phase during partial deliquescence for accurate water content estimation. The Raman spectra also revealed the formation of metastable forms of organic acids upon crystallization from supersaturated droplets of AS/GA and AS/SA. Transformation of metastable solids to stable forms was observed before water uptake in the AS/GA particles, while the SA in AS/SA particles transformed in the presence of water.Citation: Ling, T. Y., and C. K. Chan (2008), Partial crystallization and deliquescence of particles containing ammonium sulfate and dicarboxylic acids,
Hygroscopic growth is one of the most fundamental properties of atmospheric aerosols. By absorbing or evaporating water, an aerosol particle changes its size, morphology, phase, chemical composition and reactivity and other parameters such as its refractive index. These changes affect the fate and the environmental impacts of atmospheric aerosols, including global climate change. The ElectroDynamic Balance (EDB) has been widely accepted as a unique tool for measuring hygroscopic properties and for investigating phase transformation of aerosols via single particle levitation. Coupled with Raman spectroscopy, an EDB/Raman system is a powerful tool that can be used to investigate both physical and chemical changes associated with the hygroscopic properties of individually levitated particles under controlled environments. In this paper, we report the use of an EDB/Raman system to investigate (1) contact ion pairs formation in supersaturated magnesium sulfate solutions; (2) phase transformation in ammonium nitrate/ammonium sulfate mixed particles; (3) hygroscopicity of organically coated inorganic aerosols; and (4) heterogeneous reactions altering the hygroscopicity of organic aerosols.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.