Hepatic glutathione synthesis and antioxidant protection are critically important for efficient detoxification processes in response to metabolic challenges. However, this biosynthetic pathway, regulated by nuclear factor (erythroid-derived 2)-like 2 (Nrf2), previously demonstrated paradoxical repression following exposure to glucocorticoid stress hormones in cultured hepatic cells. Therefore, the present study used an in vivo model of sub-acute psychological stress to investigate the relationship between hepatic corticosteroid regulation and antioxidant systems. Male Wistar rats were kept under control conditions or subjected to six hours of restraint stress applied for 1 or 3 days (n = 8 per group) after which the liver was isolated for assays of oxidative/nitrosative status and expression of corticosteroid regulatory and Nrf2-antioxidant response element pathway members. A single stress exposure produced a significant increase in the expression of corticosterone reactivator, 11-beta-hydroxysteroid dehydrogenase 1 (11β-Hsd1), while the 11β-Hsd2 isozyme and corticosteroid-binding globulin were down-regulated following stress, indicative of an elevated availability of active corticosterone. Exposure to restraint significantly decreased hepatic concentrations of total cysteine thiols and the antioxidant reduced glutathione on Day 1 and increased 3-nitrotyrosinated and carbonylated proteins on Day 3, suggestive of oxidative/nitrosative stress in the liver following stress exposure. Conversely, there was a sustained down-regulation of Nrf2 mRNA and protein in addition to significant reductions in downstream glutamate-cysteine ligase catalytic subunit (Gclc), the rate-limiting enzyme in glutathione synthesis, on Day 1 and 3 of stress treatment. Interestingly, other antioxidant genes including superoxide dismutase 1 and 2, and glutathione peroxidase 4 were significantly up-regulated following an episode of restraint stress. In conclusion, the results of the present study indicate that increased expression of 11β-Hsd1, indicative of elevated tissue glucocorticoid concentrations, may impair the Nrf2-dependent antioxidant response.
acute restraint stress progressively increases oxidative/nitrosative stress and inflammatory markers while transiently upregulating antioxidant gene expression in the rat h i p p o c a m p u s , Free Radical Biology and Medicine,
This data article presents complementary results pertaining to the research article entitled “Sub-acute restraint stress progressively increases oxidative/nitrosative stress and inflammatory markers while transiently upregulating antioxidant gene expression in the rat hippocampus” (Chen et al., 2018). The present article provides additional gene expression data of selected neuroinflammatory markers and regulatory enzymes involved in oxidation-reduction reactions. Male Wistar rats aged 7–8 weeks were exposed to control, 1, 2, or 3 episodes of 6-h restraint stress in the light cycle after which the whole brain was quickly removed and the hippocampus excised for relative gene expression analysis. Specifically, mRNA levels of inflammatory regulators including allograft inflammatory factor 1, class II major histocompatibility complex, integrin alpha M, interferon gamma, and prostaglandin-endoperoxide synthase 2 were analyzed by real-time PCR. The gene expression of redox regulatory enzymes including glutathione peroxidase 1, glutathione peroxidase 4, superoxide dismutase 1, superoxide dismutase 2, myeloperoxidase, and NADPH oxidase subunit P47phox were also determined. These data provide useful insights in the molecular basis of inflammatory and redox regulation in the hippocampus following a short term to repeated psychological challenge in rats.
We synthesized an 125I-labeled-histamine-cyclosporin C tracer, to obviate the use of tritiated tracer in radioimmunoassay of cyclosporine. With this tracer, the assay results varied linearly with concentration up to at least 800 micrograms/L. The within-assay CV was 6.6% at 39 micrograms/L, 4.2% at 100 micrograms/L, and 7.0% at 300 micrograms/L (n = 15). The between-assay CV was 10.0, 6.4, and 7.8% for the same respective concentrations. Comparison with an assay involving tritiated tracer (x) showed good agreement of results: y = 3.81 + 0.927x (r = 0.975, n = 604). Analytical recovery ranged from 100 to 106%. We also compared another commercially available radioiodinated tracer ("125Iodocyclosporin"; Immunonuclear Corp.). Our tracer appeared to be more specific for cyclosporine, as determined by assaying chromatographic fractions of bile extract from a patient being treated with cyclosporine. Results with use of our tracer compared favorably with those obtained with the tritiated tracer, and our assay has the advantages of gamma counting vs liquid-scintillation counting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.