Studied in this paper is the transformation of an arbitrary symmetric Markov process X by multiplicative functionals which are the exponential of continuous additive functionals of X having zero quadratic variations. We characterize the transformed semigroups by their associated quadratic forms. This is done by first identifying the symmetric Markov process under Girsanov transform, which may be of independent interest, and then applying Feynman-Kac transform to the Girsanov transformed process. Stochastic analysis for discontinuous martingales is used in our approach. 2002 Éditions scientifiques et médicales Elsevier SAS Math. Subj. Class. (1991): Primary 60J45; secondary 60J57; 31C25 RÉSUMÉ.-Dans ce papier, nous étudions la transformation d'un processus symétrique de Markov X par une functionelle multiplicative, qui est l'exponentielle d'une function additive continue, de variation quadratique nulle. Les semi-groupes transformés seront caracterisés par leur formes quadratiques associées. On traite d'abord le cas de la transformation de Girsanov (qui peut avoir un interêt en sai), puis on applique la transformation de Feynman-Kac au processus transformé. L'analyse strochastique pour les martingales discontinues est utilisée dans notre approche. 2002 Éditions scientifiques et médicales Elsevier SAS
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.