Selected patients with hepatocellular carcinoma are candidates to receive potentially curative treatments, such as hepatic resection or liver transplantation, but nevertheless there is a high risk of tumor recurrence. Microvascular invasion is a histological feature of hepatocellular carcinoma related to aggressive biological behavior. We systematically reviewed 20 observational studies that addressed the prognostic impact of microvascular invasion, either after liver transplantation or resection. Outcomes were disease-free survival and overall survival. In liver transplantation, the presence of microvascular invasion shortened disease-free survival at 3 years (relative risk (RR)=3.41 [2.05-5.7]; five studies, n=651) and overall survival both at 3 years (RR=2.41 [1.72-3.37]; five studies, n=1,938) and 5 years (RR=2.29 [1.85-2.83]; six studies, n=2,003). After liver resection, microvascular invasion impacted disease-free survival at 3 and 5 years (RR=1.82 [1.61-2.07] and RR=1.51 [1.29-1.77]; four studies, n=1,501 for both comparisons). However inter/intraobserver variability in reporting and the lack of definition and grading of microvascular invasion has led to great heterogeneity in evaluating this histological feature in hepatocellular carcinoma. Thus, there is an urgent need to clarify this issue, because determining prognosis and response to therapy have become important in the current management of hepatocellular carcinoma. In this systematic review, we summarize the diagnostic and prognostic data concerning microvascular invasion in hepatocellular carcinoma and present a basis for consensus on its definition.
Liver synthetic and metabolic function can only be optimised by the growth of cells within a supportive liver matrix. This can be achieved by the utilisation of decellularised human liver tissue. Here we demonstrate complete decellularization of whole human liver and lobes to form an extracellular matrix scaffold with a preserved architecture. Decellularized human liver cubic scaffolds were repopulated for up to 21 days using human cell lines hepatic stellate cells (LX2), hepatocellular carcinoma (Sk-Hep-1) and hepatoblastoma (HepG2), with excellent viability, motility and proliferation and remodelling of the extracellular matrix. Biocompatibility was demonstrated by either omental or subcutaneous xenotransplantation of liver scaffold cubes (5 × 5 × 5 mm) into immune competent mice resulting in absent foreign body responses. We demonstrate decellularization of human liver and repopulation with derived human liver cells. This is a key advance in bioartificial liver development.Deaths from liver disease are increasing worldwide. According to the World Health Organisation, the total deaths caused by cirrhosis and liver cancer have increased by 50 million/year since 1990 1 . In the UK, the number of deaths from cirrhosis in those < 65 years have increased ~6 fold in the last 30 years 2 . At present, liver transplantation is the only successful treatment for patients with end stage liver disease. However, 20% of patients die on the waiting list due to a shortage of organ donors 3 . To expand the supply of livers available for transplantation, transplant surgeons and physicians have explored several new approaches including split liver transplants, living-related partial donor procedures 4 and the increasing use of "marginal" organs such as older donors, steatotic livers, non-heart-beating donors, donors with viral hepatitis, and donors with non-metastatic malignancy 5 . Despite these medical and surgical developments, it is unlikely that the availability of good liver grafts will ever be sufficient to meet the increasing demand of patients with end stage liver disease.Alternatives to liver transplantation such as liver support systems, including bioartificial livers, and hepatocyte transplantation have been extensively explored but none adopted in clinical practice [6][7][8][9][10][11] .In the UK, over 40% of the livers offered for transplantation are declined because of prolonged ischemic time or co-morbidities judged beyond marginal criteria 12 . This provides us with a major opportunity to explore alternative uses of human livers found to be unsuitable for transplantation following organ retrieval. In particular, while cellular viability is easily compromised, extracellular matrix (ECM) is better maintained in the discarded livers and it may be used as scaffold in which to grow normal human liver cells and recreate functional human liver tissue in vitro. Such cells could be obtained from
Fatty acid translocase CD36 (CD36) is a multifunctional membrane protein which contributes to the development of liver steatosis. In the present study, we demonstrated that the localization of CD36 on the plasma membrane of hepatocytes is increased in patients with non-alcoholic steatohepatitis. Blocking the palmitoylation of CD36 reduces CD36 distribution in hepatocyte plasma membranes and protects mice from non-alcoholic steatohepatitis. The inhibition of CD36 palmitoylation not only improved fatty acid metabolic disorders but also reduced the inflammatory response in vitro and in vivo. The present study suggests that CD36 palmitoylation is important for non-alcoholic steatohepatitis development and inhibition of CD36 palmitoylation could be used to cure non-alcoholic steatohepatitis.
, cyclin-dependent kinase inhibitor; PAI-1, plasminogen activator inhibitor-1; PDGF, platelet-derived growth factor; TGF, transforming growth factor; a-SMA, alpha-smooth muscle actin.Abstract Hepatocellular carcinoma (HCC) is the fifth most common cancer worldwide and the third leading cause of cancer death. Recent epidemiological data indicate that the mortality rate of HCC will double over the next decades in the USA and Europe. Liver cancer progresses in a large percentage of cases during the clinical course of chronic fibro-inflammatory liver diseases leading to cirrhosis. Therefore, HCC development is regarded as the result of different environmental risk factors each involving different genetic, epigenetic-and chromosomal alterations and gene mutations. During tumour progression, the malignant hepatocytes and the activated hepatic stellate cells are accompanied by cancer-associated fibroblasts, myofibroblasts and immune cells generally called tumour stromal cells. This new and dynamic milieu further enhances the responsiveness of tumour cells towards soluble mediators secreted by tumour stromal cells, thus directly affecting the malignant hepatocytes. This results in altered molecular pathways with cell proliferation as the most important mechanism of liver cancer progression. Given this contextual complexity, it is of utmost importance to characterize the molecular pathogenesis of HCC, and to identify the dominant pathways/ drivers and aberrant signalling pathways. This will allow an effective therapy for HCC that should combine strategies affecting both cancer and the tumour stromal cells. This review provides an overview of the recent challenges and issues regarding hepatic stellate cells, extracellular matrix dynamics, liver fibrosis/cirrhosis and therapy, tumour microenvironment and HCC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.