Abstract. In this article we survey properties of mixed Poisson distributions and probabilistic aspects of the Stirling transform: given a non-negative random variable X with moment sequence (µs) s∈N we determine a discrete random variable Y , whose moment sequence is given by the Stirling transform of the sequence (µs) s∈N , and identify the distribution as a mixed Poisson distribution. We discuss properties of this family of distributions and present a simple limit theorem based on expansions of factorial moments instead of power moments. Moreover, we present several examples of mixed Poisson distributions in the analysis of random discrete structures, unifying and extending earlier results. We also add several entirely new results: we analyse triangular urn models, where the initial configuration or the dimension of the urn is not fixed, but may depend on the discrete time n. We discuss the branching structure of plane recursive trees and its relation to table sizes in the Chinese restaurant process. Furthermore, we discuss root isolation procedures in Cayley-trees, a parameter in parking functions, zero contacts in lattice paths consisting of bridges, and a parameter related to cyclic points and trees in graphs of random mappings, all leading to mixed Poisson-Rayleigh distributions. Finally, we indicate how mixed Poisson distributions naturally arise in the critical composition scheme of Analytic Combinatorics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.