Flood forecasting is very important research topic in disaster prevention and reduction. The characteristics of flood involve a rather complex systematic dynamic under the influence of different meteorological factors including linear and non-linear patterns. Recently there are many novel forecasting methods of improving the forecasting accuracy. This paper explores the potential and effect of the semiparametric regression to modelize flood water-level and to forecast the inundation of Mekong Delta in Vietnam. The semi-parametric regression technique is a combination of a parametric regression approach and a non-parametric regression concept. In the process of model building, three altered linear regression models are applied for the parametric component. They are stepwise multiple linear regression, partial least squares solution and multirecursive regression method. They are used to capture flood’s linear characteristics. The nonparametric part is solved by a modified estimation of a smooth function. Furthermore, some justified nonlinear regression models based on artificial neural network are also able to obtain flood’s non-linear characteristics. They help us to smooth the model's non-parametric constituent easily and quickly. The last element is the model's error. Then the semiparametric regression is used for ensemble model based on the principle component analysis technique. Flood water-level forecasting, with a lead time of one and more days, has been made by using a selected sequence of past water-level values and some relevant factors observed at a specific location. Time-series analytical method is utilized to build the model. Obtained empirical results indicate that the prediction by using the amended semi-parametric regression ensemble model is generally better than those obtained by using the other models presented in this study in terms of the same evaluation measurements. Our findings reveal that the estimation power of the modern statistical model is reliable and auspicious. The proposed model here can be used as a promising alternative forecasting tool for flood to achieve better forecasting accuracy and to optimize prediction quality further.
In recent years, inundation, one of natural calamities, occurs frequently and fiercely. We are sustained severe losses in the floods every year. Therefore, the development of control methods to determine, analyze, model and predict the floods is indispensable and urgent. In this paper, we propose a justified semiparametric regression model for flood water levels forecasting. The new model has three components. The first one is parametric elements of the model. They are water level, precipitation, evaporation, air-humidity and groundmoisture values, etc. There is a complex connection among these parametrics. Several innovated regression models have been offered and experimented for this complicated relationship. The second one is a non-parametric ingredient of our model. We use the Arnak S. Dalalyan et al.’s effective dimension-reduction subspace algorithm and some modified algorithms in neural networks to deal with it. They are altered back-propagation method and ameliorated cascade correlation algorithm. Besides, we also propose a new idea to modify the conjugate gradient one. These actions will help us to smooth the model’s non-parametric constituent easily and quickly. The last component is the model’s error. The whole elements are essential inputs to operational flood management. This work is usually very complex owing to the uncertain and unpredictable nature of underlying phenomena. Flood-waterlevels forecasting, with a lead time of one and more days, was made using a selected sequence of past water-level values observed at a specific location. Time-series analytical method is also utilized to build the model. The results obtained indicate that, with a new semiparametric regression one and the effective dimension-reduction subspace algorithm, together with some improved algorithms in neural network, the estimation power of the modern statistical model is reliable and auspicious, especially for flood forecasting/modeling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.