In this paper we construct two families of nonstandard finite difference (NSFD) schemes preserving the essential properties of a computer virus propagation model, such as positivity, boundedness and stability. The first family of NSFD schemes is constructed based on the nonlocal discretization and has first order of accuracy, while the second one is based on the combination of a classical Runge-Kutta method and selection of a nonstandard denominator function and it is of fourth order of accuracy. The theoretical study of these families of NSFD schemes is performed with support of numerical simulations. The numerical simulations confirm the accuracy and the efficiency of the fourth order NSFD schemes. They hint that the disease-free equilibrium point is not only locally stable but also globally stable, and then this fact is proved theoretically. The experimental results also show that the global stability of the continuous model is preserved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.