This paper describes KIT's submissions to the IWSLT2020 Speech Translation evaluation campaign. We first participate in the simultaneous translation task, in which our simultaneous models are Transformer-based and can be efficiently trained to obtain low latency with minimized compromise in quality. On the offline speech translation task, we applied our new Speech Transformer architecture to endto-end speech translation. The obtained model can provide translation quality which is competitive to a complicated cascade. The latter still has the upper hand, thanks to the ability to transparently access to the transcription, and resegment the inputs to avoid fragmentation.
Transformer models are powerful sequence-to-sequence architectures that are capable of directly mapping speech inputs to transcriptions or translations. However, the mechanism for modeling positions in this model was tailored for text modeling, and thus is less ideal for acoustic inputs. In this work, we adapt the relative position encoding scheme to the Speech Transformer, where the key addition is relative distance between input states in the self-attention network. As a result, the network can better adapt to the variable distributions present in speech data. Our experiments show that our resulting model achieves the best recognition result on the Switchboard benchmark in the non-augmentation condition, and the best published result in the MuST-C speech translation benchmark. We also show that this model is able to better utilize synthetic data than the Transformer, and adapts better to variable sentence segmentation quality for speech translation.
End-to-end multilingual speech recognition involves using a single model training on a compositional speech corpus including many languages, resulting in a single neural network to handle transcribing different languages. Due to the fact that each language in the training data has different characteristics, the shared network may struggle to optimize for all various languages simultaneously. In this paper we propose a novel multilingual architecture that targets the core operation in neural networks: linear transformation functions. The key idea of the method is to assign fast weight matrices for each language by decomposing each weight matrix into a shared component and a language dependent component. The latter is then factorized into vectors using rank-1 assumptions to reduce the number of parameters per language. This efficient factorization scheme is proved to be effective in two multilingual settings with 7 and 27 languages, reducing the word error rates by 26% and 27% rel. for two popular architectures LSTM and Transformer, respectively.
This paper contains the description for the submission of Karlsruhe Institute of Technology (KIT) for the multilingual TEDx translation task in the IWSLT 2021 evaluation campaign. Our main approach is to develop both cascade and end-to-end systems and eventually combine them together to achieve the best possible results for this extremely low-resource setting. The report also confirms certain consistent architectural improvement added to the Transformer architecture, for all tasks: translation, transcription and speech translation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.