This paper presents a two-class electroencephal-ography-based classification for classifying of driver fatigue (fatigue state versus alert state) from 43 healthy participants. The system uses independent component by entropy rate bound minimization analysis (ERBM-ICA) for the source separation, autoregressive (AR) modeling for the features extraction, and Bayesian neural network for the classification algorithm. The classification results demonstrate a sensitivity of 89.7%, a specificity of 86.8%, and an accuracy of 88.2%. The combination of ERBM-ICA (source separator), AR (feature extractor), and Bayesian neural network (classifier) provides the best outcome with a p-value < 0.05 with the highest value of area under the receiver operating curve (AUC-ROC = 0.93) against other methods such as power spectral density as feature extractor (AUC-ROC = 0.81). The results of this study suggest the method could be utilized effectively for a countermeasure device for driver fatigue identification and other adverse event applications.
Freezing of Gait (FOG) is a common symptom in the advanced stages of Parkinson's disease (PD), which significantly affects patients' quality of life. Treatment options offer limited benefit and there are currently no mechanisms able to effectively detect FOG before it occurs, allowing time for a sufferer to avert a freezing episode. Electroencephalography (EEG) offers a novel technique that may be able to address this problem. In this paper, we investigated the univariate and multivariate EEG features determined by both Fourier and wavelet analysis in the confirmation and prediction of FOG. The EEG power measures and network properties from 16 patients with PD and FOG were extracted and analyzed. It was found that both power spectral density and wavelet energy could potentially act as biomarkers during FOG. Information in the frequency domain of the EEG was found to provide better discrimination of EEG signals during transition to freezing than information coded in the time domain. The performance of the FOG prediction systems improved when the information from both domains was used. This combination resulted in a sensitivity of 86.0%, specificity of 74.4%, and accuracy of 80.2% when predicting episodes of freezing, outperforming current accelerometry-based tools for the prediction of FOG.
This paper presents an improvement of classification performance for electroencephalography (EEG)-based driver fatigue classification between fatigue and alert states with the data collected from 43 participants. The system employs autoregressive (AR) modeling as the features extraction algorithm, and sparse-deep belief networks (sparse-DBN) as the classification algorithm. Compared to other classifiers, sparse-DBN is a semi supervised learning method which combines unsupervised learning for modeling features in the pre-training layer and supervised learning for classification in the following layer. The sparsity in sparse-DBN is achieved with a regularization term that penalizes a deviation of the expected activation of hidden units from a fixed low-level prevents the network from overfitting and is able to learn low-level structures as well as high-level structures. For comparison, the artificial neural networks (ANN), Bayesian neural networks (BNN), and original deep belief networks (DBN) classifiers are used. The classification results show that using AR feature extractor and DBN classifiers, the classification performance achieves an improved classification performance with a of sensitivity of 90.8%, a specificity of 90.4%, an accuracy of 90.6%, and an area under the receiver operating curve (AUROC) of 0.94 compared to ANN (sensitivity at 80.8%, specificity at 77.8%, accuracy at 79.3% with AUC-ROC of 0.83) and BNN classifiers (sensitivity at 84.3%, specificity at 83%, accuracy at 83.6% with AUROC of 0.87). Using the sparse-DBN classifier, the classification performance improved further with sensitivity of 93.9%, a specificity of 92.3%, and an accuracy of 93.1% with AUROC of 0.96. Overall, the sparse-DBN classifier improved accuracy by 13.8, 9.5, and 2.5% over ANN, BNN, and DBN classifiers, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.