To improve methods of estimating use of evidence-based psychotherapy for posttraumatic stress disorder in the Veteran's health administration, we evaluated administrative data and note text for patients newly enrolling in six VHA outpatient PTSD clinics in New England during the 2010 fiscal year (n = 1,924). Using natural language processing, we developed machine learning algorithms that mimic human raters in classifying note text. We met our targets for algorithm performance as measured by precision, recall, and F-measure. We found that 6.3 % of our study population received at least one session of evidence-based psychotherapy during the initial 6 months of treatment. Evidence-based psychotherapies appear to be infrequently utilized in VHA outpatient PTSD clinics in New England. Our method could support efforts to improve use of these treatments.
Reducing custom software development effort is an important goal in information retrieval (IR). This study evaluated a generalizable approach involving with no custom software or rules development. The study used documents "consistent with cancer" to evaluate system performance in the domains of colorectal (CRC), prostate (PC), and lung (LC) cancer. Using an end-user-supplied reference set, the automated retrieval console (ARC) iteratively calculated performance of combinations of natural language processing-derived features and supervised classification algorithms. Training and testing involved 10-fold cross-validation for three sets of 500 documents each. Performance metrics included recall, precision, and F-measure. Annotation time for five physicians was also measured. Top performing algorithms had recall, precision, and F-measure values as follows: for CRC, 0.90, 0.92, and 0.89, respectively; for PC, 0.97, 0.95, and 0.94; and for LC, 0.76, 0.80, and 0.75. In all but one case, conditional random fields outperformed maximum entropy-based classifiers. Algorithms had good performance without custom code or rules development, but performance varied by specific application.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.