Bisphenol A (BPA) is an endocrine‐disrupting chemical that has caught a lot of attention recently due to its toxicity and ubiquitous presence in the environment. Therefore, removal of BPA from contaminated environments such as water is of high importance. In this study, an alginate/pectin anode containing immobilized laccase is prepared, and the anode is applied in an electroenzymatic oxidation system for BPA degradation. After 4 h, the laccase–alginate/pectin system demonstrates a much higher BPA removal efficiency (95%) than the similar system without immobilized laccase (50%, control system). The effects of humic acids (HA) on BPA degradation are also observed. HA may have accelerated the laccase‐catalyzed coupling reaction between BPA and reactive radical intermediates, which results in increased BPA removal efficiency (92% after 150 min). It is demonstrated that laccase immobilization on an alginate/pectin electrode can greatly enhance BPA removal via electrooxidation. Humic acids which are abundantly present in nature can also make this removal process faster. Overall, this study highlights the great application potential of laccase‐immobilized bioelectrodes for BPA removal in conditions close to real‐life scenarios.
This study proposed a sequential redox process to partially degrade tetrabromobisphenol A (TBBPA) within a reactor to a great extent. After 72 hours in an anoxic environment, 20 ppm of TBBPA could be effectively degraded by sulfurized zerovalent iron nanoparticles (S-nZVI) at concentrations of 2 g L-1 and 4 g L-1. Biphenol A (BPA) together with tri-, di-, and monobromobisphenol A was detected by high-performance liquid chromatography (HPLC) suggesting that TBBPA was debrominated by S-nZVI in a stepwise manner. Following the S-nZVI treatment, a persulfate-advanced oxidation process (PS-AOP) system with persulfate concentrations varied from 5 to 20 mM was incorporated to degrade the final debrominated byproduct, BPA, for 2 hours. The two-stage anoxic/oxic reactions at the same reactor with initial conditions (0.037 mM TBBPA, 4 g L-1 of S-nZVI, pH 6 in anoxic stage, 20 mM of PS in the latter oxic stage) were investigated. The sulfurized layer played an important role in such a system and hypothetically contributes to increasing electron transfer from Fe0 core as well as hydrophobicity of the NP surface. It was demonstrated that the S-nZVI/PS-AOP system could effectively remediate TBBPA and BPA and consequently provide a promising strategy to remedy brominated organic pollutants in the environment.
Identifying the proper chemical and biological materials as soil amendments is a great concern because they replace soil properties and subsequently change the soil quality. Hence, this study was conducted to evaluate the effects of a diverse range of soil amendments including bentonite (B), talc (T), activated carbon (AC), and cornstarch (CS) in form of sole and composite on the immobilization and bioavailability of As, Cu, and Zn. The amendments were characterized by SEM, FT-IR, and XRF, and applied at 2% (w/w) in the experimental pots with an Asteraceae (i.e., lettuce) for 45 days to monitor plant growth parameters and soil microbial community. Soil pH from 6.1 ± 0.02 significantly increased in the amended soils with the maximum value found for TAC (7.4 ± 0.04). The results showed that soil amendments reduced easily in an exchangeable fractionation of As, Cu, and Zn with the maximum values found for BAC by 66.4%, AC by 84.2%, and T by 89.7% respectively. Adding B, T, AC, and their composites induced dry biomass of lettuce >40 wt.%, while CS and its composites did not affect the dry biomass of the plant. The average content of Cu and Zn in plant tissues decreased >45 wt% in B, AC, and their composites amended soils; meanwhile, AC and its composites mitigated As uptake by >30 wt.% in lettuce. The results of Biolog Ecoplate showed that the amending soils improved the microbial community, especially for composites (e.g., TCS). The results demonstrated that adding composites amendments provided an efficient method for the immobilization of metals and metalloids, and also induced plant growth parameters and microbial community.
The presence of copper (Cu)-contaminated soil has increased recently due to agricultural and industrial activities. Immobilization techniques using soil amendments have attracted significant research because of their cost-effectiveness, eco-friendliness, and community acceptance. This study used various commercial amendments, including magnetite (M), talc (T), activated carbon (AC), and cornstarch (CS), to immobilize Cu in soil contaminated by acidic waste materials with Cu in Korea (9546 ± 5 mg/kg). To evaluate the immobilizing effect of these amendments, this study applied a sequential process of column leaching and plant uptake tests to observe the ability of Cu to remain in soil with and without amendments through the Cu removal rate. The amendments were characterized by SEM, XRD, and specific surface area and applied to the soil at a rate of 2% (w/w). The first stage of evaluation, i.e., the column leaching test, was conducted by continuously pumping distilled water (DW) for 28 days, and the second stage of evaluation, i.e., the plant uptake test, was started immediately after by planting 10-day-old lettuce seedlings for 28 days. The experimental results showed that all of the amendments had a significant effect on Cu immobilization Cu in soil (p < 0.05), and the T treatment showed the highest efficiency in Cu immobilization, with only 47.0% Cu loss compared to 73.5% in the control soil when assessed by sequential column leaching and plant uptake tests. In conclusion, this study provides an effective assessment method to evaluate the effect of amendments on Cu immobilization in soil, as well as providing feasible options to immobilize Cu using commercial amendments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.