Water pixel extraction and correction of the atmospheric signal represent prerequisite steps prior to applying algorithms dedicated to the assessment of water quality of natural surface water bodies. The recent multiplication of medium spatial resolution sensors (10-60 m) provides the required constellation to monitoring bio-optical and biogeochemical parameters of surface waters at the relevant spatial-temporal scales. Here we present a new approach to identify water pixels and to extract the atmospheric contribution to the top of atmosphere signal measured by the NAOMI sensor on board the first Vietnamese satellite, VNREDSat-1. After verifying the TOA calibration of NAOMI through a vicarious calibration exercise, we adapt a recent water pixel extraction algorithm (WiPE) to NAOMI, and develop a new atmospheric correction algorithm (referred to as red-NIR) based on the use of the red and NIR bands (the only bands available for that purpose on NAOMI) and spectral relationships. The evaluation of red-NIR with a match-up data set gathering remote sensing reflectance, R rs , measurements performed at the AERONET-OC stations in moderately turbid waters indicates excellent performance in the blue and green part of the spectrum (similar to the performances reached by the SeaDAS NIR-SWIR algorithms) and lower accuracy in the red. Intercomparison of simultaneous images collected by NAOMI and OLI over a more turbid water body shows an excellent agreement between the NAOMI-R rs estimated by the present processing, and the OLI-R rs estimated from the ACOLITE algorithm. This approach will allow sensors that do not have SWIR bands, such as SPOT-6 and -7, to be processed, making their data exploitation available for long-term temporal analyses.
In this study, the effect of oxygen in the shielding gas on the material flow behavior of the weld pool surface was discussed to clarify the dominant driving weld pool force in keyhole plasma arc welding (KPAW). To address this issue, the convection flow on the top surface of weld pool was observed using a high-speed video camera. The temperature distribution on the surface along keyhole wall was measured using the two-color pyrometry method to confirm the Marangoni force activity on the weld pool. The results show that the inclination angle of the keyhole wall (keyhole shape) increased especially near the top surface due to the decrease in the surface tension of weld pool through surface oxidation when a shielding gas of Ar + 0.5% O2 was used. Due to the change in the keyhole shape, the upward and backward shear force compositions created a large inclination angle at the top surface of the keyhole. From the temperature measurement results, the Marangoni force was found to alter the direction when 0.5% O2 was mixed with the shielding gas. The shear force was found to be the strongest force among the four driving forces. The buoyant force and Lorentz force were very weak. The Marangoni force was stronger than the Lorentz force but was weaker than shear force. The interaction of shear force and Marangoni force controlled the behavior and speed of material flow on the weld pool surface. A strong upward and backward flow was observed in the case of mixture shielding gas, whereas a weak upward flow was observed for pure Ar. The heat transportation due to the weld pool convection significantly changed when only a small amount of oxygen was admixed in the shielding gas. The results can be applied to control the penetration ratio in KPAW.
Polyurethane (PU) foam is known as the popular material for the applications in many fields of industry and life. To improve the mechanical and thermal properties of this material, in this research, PU foam was reinforced with aniline-modified multiwalled carbon nanotubes (MWCNTs). Fourier transform infrared FTIR spectrum of modified MWCNTs showed the aniline was grafted on the surface of MWCNTs through the appearance of –NH2 stretches. The effect of MWCNTs with and without modification on the density, porosity, compressive strength, and heat conductivity of PU/MWCNT foam nanocomposites was investigated. The dispersibility of MWCNTs in the PU matrix was enhanced after modification with aniline. Compressive strength of PU nanocomposite reached the highest value after adding 3 wt.% of modified MWCNTs into PU foam. Besides, the water uptake of PU nanocomposites using 3 wt.% of MWCNTs was decreased to 13.4% as compared to that using unmodified MWCNTs. The improvement in thermal conductivity of PU/aniline-modified MWCNT nanocomposite was observed due to the change in the cellular size of PU foam in the presence of MWCNTs as shown by SEM images.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.