Natural anisotropic building-blocks such as cellulose nanocrystals (CNCs) have attracted considerable attention due to their biodegradability and nanometer-size. In this work the colloidal behavior of CNCs, obtained from sulfuric acid hydrolysis of microcrystalline cellulose, has been studied in presence of salts of different valences. The influence on the colloidal stability and nature of aggregates has been investigated for monovalent salts (LiCl, NaCl, KCl, CsCl), divalent salts (CaCl 2 and MgCl 2 ), and a trivalent salt (AlCl 3 ), both experimentally by means of turbidity and small angle X-ray scattering (SAXS) measurements, as well as by Monte Carlo simulations using a simple coarse-grained model. For the entire salt series, a critical aggregation concentration (CAC) could be determined by turbidity measurements, as a result of the reduction of effective Coulomb repulsions due to the presence of sulfate groups on the CNC surface. The CACs also followed the Schulze-Hardy law, i.e. the critical aggregation concentration decreased with increasing counterion valence. For the monovalent ions, the CACs followed the trend, which could be rationalized in terms of matching affinities between the cation and the sulfate groups present at the surface of CNCs. From the SAXS measurements it was shown that the density of the aggregates increased with increasing salt concentration and ion valence. In addition, these findings were rationalized by means of simulation, which showed a good correlation with experimental data. The combination of the experimental techniques and the simulations offered insight into interactionaggregation relationship of CNC suspensions, which is of importance for their structural design applications.Electronic supplementary material The online version of this article
Stable suspensions of protein microgels are formed by heating salt-free β-lactoglobulin solutions at concentrations up to about C = 50 g·L(-1) if the pH is set within a narrow range between 5.75 and 6.1. The internal protein concentration of these spherical particles is about 150 g·L(-1) and the average hydrodynamic radius decreases with increasing pH from 200 to 75 nm. The formation of the microgels leads to an increase of the pH, which is a necessary condition to obtain stable suspensions. The spontaneous increase of the pH during microgel formation leads to an increase of their surface charge density and inhibits secondary aggregation. This self-stabilization mechanism is not sufficient if the initial pH is below 5.75 in which case secondary aggregation leads to precipitation. Microgels are no longer formed above a critical initial pH, but instead short, curved protein strands are obtained with a hydrodynamic radius of about 15-20 nm.
Background: Herpes simplex virus attachment protein gC comprises a glycosaminoglycan-binding site and a mucin-like region. Results: Removal of the mucin-like region modifies gC interaction with glycosaminoglycans.
Conclusion:The mucin-like region balances the gC-glycosaminoglycan interaction during virus binding to and release from target cells. Significance: The finding might be of relevance for similar proteins on other GAG-binding viruses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.