An essential application in intelligent transportation systems is multi-target multi-camera tracking (MTMCT), where the target’s activity is tracked from different cameras. Although the tracking-by-detection scheme is the primary paradigm in MTMCT, the object association information from the video frames is lost. This is mainly because the multi-camera multi-object matching uses the information from the video frames separately. To solve this problem and leverage this association information, we propose an MTMCT framework, where features are built in the form of a graph and a graph similarity algorithm is used to match multi-camera objects. In this paper, we focus on the real-time scenario, where only the past images are used to match an object. Our method achieves an IDF1 score (the ratio of the number of correctly identified objects to the number of ground truth and average objects) of 0.75 with a rate of 14 frames per second (fps).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.