The objective of this study is to classify the rice grains of seventeen different varieties popularly planted in Vietnam. Image processing is used to extract color, morphological, and texture features of the rice grains. Five feature subsets are formed, namely, morphological, basic color, clustering color, statistical, and gray level co-occurrence matrix (GLCM). These subsets and combined sets are evaluated for classification ability with a support vector machine (SVM). A dataset of 248 features, including a total of color, morphological, and texture features classified with the SVM gives an overall accuracy of 88.29%. To decrease the number of used features and to improve the classification accuracy, the proposed method combining binary particle swarm optimization (BPSO) and the SVM, called BPSO+SVM, is applied to the dataset. In the results, classification accuracy from BPSO+SVM reaches 93.94% using only 96 selected features. The obtained result shows the proposed method achieves higher classification accuracy than the SVM alone, and the required number of features is only 39% of the total dataset. This result can be applied for developing an automatic classification and identification system of rice varieties.INDEX TERMS Rice varieties, color features, morphological features, texture features, support vector machine, binary particle swarm optimization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.