Progranulin (PGRN), encoded by the GRN gene in humans, is a secreted growth factor implicated in a multitude of processes ranging from regulation of inflammation to wound healing and tumorigenesis. The clinical importance of PGRN became especially evident in 2006, when heterozygous mutations in the GRN gene, resulting in haploinsufficiency, were found to be one of the main causes of frontotemporal lobar degeneration (FTLD). FTLD is a clinically heterogenous disease that results in the progressive atrophy of the frontal and temporal lobes of the brain. Despite significant research, the exact function of PGRN and its mechanistic relationship to FTLD remain unclear. However, growing evidence suggests a role for PGRN in the lysosome-most striking being that homozygous GRN mutation leads to neuronal ceroid lipofuscinosis, a lysosomal storage disease. Since this discovery, several links between PGRN and the lysosome have been established, including the existence of two independent lysosomal trafficking pathways, intralysosomal processing of PGRN into discrete functional peptides, and direct and indirect regulation of lysosomal hydrolases. Here, we summarize the cellular functions of PGRN, its roles in the nervous system, and its link to multiple neurodegenerative diseases, with a particular focus dedicated to recent lysosome-related mechanistic developments.
Neurons face unique challenges of transporting nascent autophagic vacuoles (AVs) from distal axons toward the soma, where mature lysosomes are mainly located. Autophagy defects have been linked to Alzheimer’s disease (AD). However, the mechanisms underlying altered autophagy remain unknown. Here, we demonstrate that defective retrograde transport contributes to autophagic stress in AD axons. Amphisomes predominantly accumulate at axonal terminals of mutant hAPP mice and AD patient brains. Amyloid-β (Aβ) oligomers associate with AVs in AD axons and interact with dynein motors. This interaction impairs dynein recruitment to amphisomes through competitive interruption of dynein-Snapin motor-adaptor coupling, thus immobilizing them in distal axons. Consistently, deletion of Snapin in mice causes AD-like axonal autophagic stress, whereas overexpressing Snapin in hAPP neurons reduces autophagic accumulation at presynaptic terminals by enhancing AV retrograde transport. Altogether, our study provides new mechanistic insight into AD-associated autophagic stress, thus establishing a foundation for ameliorating axonal pathology in AD.DOI:
http://dx.doi.org/10.7554/eLife.21776.001
Haploinsufficiency of progranulin (PGRN) is a leading cause of frontotemporal lobar degeneration (FTLD). Loss of PGRN leads to lysosome dysfunction during aging. TMEM106B, a gene encoding a lysosomal membrane protein, is the main risk factor for FTLD with PGRN haploinsufficiency. But how TMEM106B affects FTLD disease progression remains to be determined. Here, we report that TMEM106B deficiency in mice leads to accumulation of lysosome vacuoles at the distal end of the axon initial segment in motor neurons and the development of FTLD-related pathology during aging. Ablation of both PGRN and TMEM106B in mice results in severe neuronal loss and glial activation in the spinal cord, retina, and brain. Enlarged lysosomes are frequently found in both microglia and astrocytes. Loss of both PGRN and TMEM106B results in an increased accumulation of lysosomal vacuoles in the axon initial segment of motor neurons and enhances the manifestation of FTLD phenotypes with a much earlier onset. These results provide novel insights into the role of TMEM106B in the lysosome, in brain aging, and in FTLD pathogenesis.
Background: Mutations resulting in progranulin (PGRN) haploinsufficiency cause frontotemporal lobar degeneration with TDP-43-positive inclusions (FTLD-TDP), a devastating neurodegenerative disease. PGRN is localized to the lysosome and important for proper lysosome function. However, the metabolism of PGRN in the lysosome is still unclear. Results: Here, we report that PGRN is processed into~10 kDa peptides intracellularly in multiple cell types and tissues and this processing is dependent on lysosomal activities. PGRN endocytosed from the extracellular space is also processed in a similar manner. We further demonstrated that multiple cathepsins are involved in PGRN processing and cathepsin L cleaves PGRN in vitro. Conclusions: Our data support that PGRN is processed in the lysosome through the actions of cathepsins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.