BackgroundAntimicrobial resistance (AMR) poses a colossal threat to global health and incurs high economic costs to society. Economic evaluations of antimicrobials and interventions such as diagnostics and vaccines that affect their consumption rarely include the costs of AMR, resulting in sub-optimal policy recommendations. We estimate the economic cost of AMR per antibiotic consumed, stratified by drug class and national income level.MethodsThe model is comprised of three components: correlation coefficients between human antibiotic consumption and subsequent resistance; the economic costs of AMR for five key pathogens; and consumption data for antibiotic classes driving resistance in these organisms. These were used to calculate the economic cost of AMR per antibiotic consumed for different drug classes, using data from Thailand and the United States (US) to represent low/middle and high-income countries.ResultsThe correlation coefficients between consumption of antibiotics that drive resistance in S. aureus, E. coli, K. pneumoniae, A. baumanii, and P. aeruginosa and resistance rates were 0.37, 0.27, 0.35, 0.45, and 0.52, respectively. The total economic cost of AMR due to resistance in these five pathogens was $0.5 billion and $2.9 billion in Thailand and the US, respectively. The cost of AMR associated with the consumption of one standard unit (SU) of antibiotics ranged from $0.1 for macrolides to $0.7 for quinolones, cephalosporins and broad-spectrum penicillins in the Thai context. In the US context, the cost of AMR per SU of antibiotic consumed ranged from $0.1 for carbapenems to $0.6 for quinolones, cephalosporins and broad spectrum penicillins.ConclusionThe economic costs of AMR per antibiotic consumed were considerable, often exceeding their purchase cost. Differences between Thailand and the US were apparent, corresponding with variation in the overall burden of AMR and relative prevalence of different pathogens. Notwithstanding their limitations, use of these estimates in economic evaluations can make better-informed policy recommendations regarding interventions that affect antimicrobial consumption and those aimed specifically at reducing the burden of AMR.Electronic supplementary materialThe online version of this article (10.1186/s13756-018-0384-3) contains supplementary material, which is available to authorized users.
Antimicrobial resistance is a major health threat worldwide as it brings about poorer treatment outcome and places economic burden to the society. This study aims to estimate the annual relative increased in inpatient mortality from antimicrobial resistant (AMR) nosocomial infections (NI) in Thailand. A retrospective cohort study was conducted at Ramathibodi Hospital, Bangkok, Thailand, over 2008–2012. Survival model was used to estimate the hazard ratio of mortality of AMR relative to those patients without resistance (non-AMR) after controlling for nine potential confounders. The majority of NI (73.80%) were caused by AMR bacteria over the study period. Patients in the AMR and non-AMR groups had similar baseline clinical characteristics. Relative to patients in the non-AMR group, the expected hazard ratios of mortality for patients in the AMR group with Acinetobacter baumannii, Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus were 1.92 (95% CI 0.10–35.52), 1.25 (95% CI 0.08–20.29), 1.60 (95% CI 0.13–19.10) and 1.84 (95% CI 0.04–95.58), respectively. In the complete absence of AMR bacteria, this study estimated that annually, in Thailand, there would be 111 295 fewer AMR cases and 48 258 fewer deaths.
Vancomycin Area Under the Curve (AUC) monitoring has been recommended to ensure successful clinical outcomes and minimize the risk of nephrotoxicity, rather than traditional trough concentration. However, vancomycin AUC monitoring by a pharmacist-led multidisciplinary team (PMT) has not been well established in Southeast Asia. This study was conducted at Thammasat University Hospital. Adult patients aged ≥ 18 years who were admitted and received intravenous vancomycin ≥48 h were included. The pre-PMT period (April 2020–September 2020) was defined as a period using traditional trough concentration, while the post-PMT period (October 2020–March 2021) was defined as a period using PMT to monitor vancomycin AUC. The primary outcome was the rate of achievement of the therapeutic target of an AUC/MIC ratio of 400–600. There was a significantly higher rate of achievement of therapeutic target vancomycin AUC during post-PMT period (66.7% vs. 34.3%, p < 0.001). Furthermore, there was a significant improvement in the clinical cure rate (92.4% vs. 69.5%, p < 0.001) and reduction in 30-day ID mortality (2.9% vs. 12.4%, p = 0.017) during the post-PMT period. Our study demonstrates that PMT was effective to help attain a targeted vancomycin AUC, improve the clinical cure rate, and reduce 30-day ID mortality. This intervention should be encouraged to be implemented in Southeast Asia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.