KCNE peptides are a class of type I transmembrane  subunits that assemble with and modulate the gating and ion conducting properties of a variety of voltage-gated K ؉ channels. Accordingly, mutations that disrupt the assembly and trafficking of KCNE-K ؉ channel complexes give rise to disease. The cellular mechanisms responsible for ensuring that KCNE peptides assemble with voltage-gated K ؉ channels have yet to be elucidated. Using enzymatic deglycosylation, immunofluorescence, and quantitative cell surface labeling experiments, we show that KCNE1 peptides are retained in the early stages of the secretory pathway until they co-assemble with specific K ؉ channel subunits; co-assembly mediates KCNE1 progression through the secretory pathway and results in cell surface expression. We also address an apparent discrepancy between our results and a previous study in human embryonic kidney cells, which showed wild type KCNE1 peptides can reach the plasma membrane without exogenously expressed K ؉ channel subunits. By comparing KCNE1 trafficking in three cell lines, our data suggest that the errant KCNE1 trafficking observed in human embryonic kidney cells may be due, in part, to the presence of endogenous voltage-gated K ؉ channels in these cells.
N-Glycosylation of membrane proteins is critical for their proper folding, co-assembly and subsequent matriculation through the secretory pathway. Here, we examine the kinetics of N-glycan addition to type I transmembrane KCNE1 K ؉ channel -subunits, where point mutations that prevent N-glycosylation at one consensus site give rise to disorders of the cardiac rhythm and congenital deafness. We show that KCNE1 has two distinct N-glycosylation sites: a typical co-translational site and a consensus site ϳ20 residues away that unexpectedly acquires N-glycans after protein synthesis (post-translational). Mutations that ablate the co-translational site concomitantly reduce glycosylation at the post-translational site, resulting in unglycosylated KCNE1 subunits that cannot reach the cell surface with their cognate K ؉ channel. This long range inhibition is highly specific for post-translational N-glycosylation because mutagenic conversion of the KCNE1 post-translational site into a co-translational site restored both monoglycosylation and anterograde trafficking. These results directly explain how a single point mutation can prevent N-glycan attachment at multiple sites, providing a new biogenic mechanism for human disease.
Molecular dioxygen, O(2), is an important element in cellular microenvironment in vivo, and often overlooked in standard in vitro and ex vivo cell culture systems. Molecular oxygen is the ultimate electron acceptor in oxidative cellular respiration, and also a signal that regulates cell fate through concentration gradients. Recent advances in physiology of oxygen and adult stem cell research have shown that apart from being important for oxidative phosphorylation, thus energy metabolism, oxygen is also important as a signaling molecule and an integral part of the stem cell niche. This review article covers the influence of physiologically relevant oxygen levels on adult stem cells through highlighting the research on the effect of oxygen concentration on hematopoietic stem cell maintenance, proliferation and differentiation. This is important particularly to understand the embryonic and adult stem cell biology and physiology. The new discoveries in this field will help to further improve current tissue engineering and clinical applications. In addition, understanding the relationship between oxygen and stemness is invaluable for the advanced treatments of neoplastic diseases. Authors believe that in the future, active and programmed dynamic of oxygen levels will be routinely used for the programmed in vitro and ex vivo expansion of different adult stem cell types and tissue regeneration purposes.
The small intestinal mucosa exhibits a repetitive architecture organized into two fundamental structures: villi, projecting into the intestinal lumen and composed of mature enterocytes, goblet cells and enteroendocrine cells; and crypts, residing proximal to the submucosa and the muscularis, harboring adult stem and progenitor cells and mature Paneth cells, as well as stromal and immune cells of the crypt microenvironment. Until the last few years, in vitro studies of small intestine was limited to cell lines derived from either benign or malignant tumors, and did not represent the physiology of normal intestinal epithelia and the influence of the microenvironment in which they reside. Here, we demonstrate a method adapted from Sato et al. (2009) for culturing primary mouse intestinal crypt organoids derived from C57BL/6 mice. In addition, we present the use of crypt organoid cultures to assay the crypt metabolic profile in real time by measurement of basal oxygen consumption, glycolytic rate, ATP production and respiratory capacity. Organoids maintain properties defined by their source and retain aspects of their metabolic adaptation reflected by oxygen consumption and extracellular acidification rates. Real time metabolic studies in this crypt organoid culture system are a powerful tool to study crypt organoid energy metabolism, and how it can be modulated by nutritional and pharmacological factors. Video LinkThe video component of this article can be found at
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.