a b s t r a c t l-lysine coated iron oxide (LCIO) nanoparticles were synthesized by a co-precipitation method in the presence of amino acid. XRD analysis confirmed the presence of cubic magnetite phase with an average crystallite size of 8 ± 4 nm. Particle size estimated from TEM, by log-normal fitting, is ∼114 nm. The difference between the crystallite size from XRD and particle size from TEM indicates polycrystalline nature of synthesized particles. FT-IR show that the binding of l-lysine on the surface of iron oxide through carboxyl groups is via unidentate linkage. The presence of l-lysine on iron oxide is also confirmed by zeta potential measurements on LCIO nanoparticles, revealing a partial coverage of iron oxide with l-lysine. In order to obtain chemically stable, well-dispersed and uniform sized nanoparticles, amino acids are suitable because they play a very important role in the body. Conductivity measurements were performed to investigate the influence of the coating on the conduction characteristics of iron oxide and results show the existence of a hopping conduction mechanism. Magnetic transition is observed at ∼70 • C for uncoated iron oxide and LCIO samples. Frequency (1 Hz to 3 MHz) and temperature (290-420 K) dependant AC conductivity measurements have resulted in AC activation energies between 0.048 and 0.041 eV for uncoated and 0.050-0.044 eV for LCIO nanoparticles. Temperature-dependant DC resistivity measurements of iron oxide and LCIO at high temperatures resulted in the DC activation energies of 0.22 and 0.43 eV respectively. The higher activation energy value for LCIO is the result of coating by insulating l-lysine layer.
In this study, we aimed to examine the effect of dopant type and concentration on the ionic conductivity of ceria‐based electrolytes. Ceria electrolytes doped with samarium (SDC), gadolinium (GDC), neodymium (NDC), and lanthanum (LDC) for solid oxide fuel cells were prepared through the polyol process. Acetate compounds of cerium and dopants were used as starting materials, and triethylene glycol was used as a solvent. Prepared powders and pellets were characterized by TG/DTA, XRD, FTIR, SEM, EIS, and EDS techniques. The results of the TG/DTA and XRD indicated that a single‐phase fluorite structure formed at the relatively low calcination temperature of 500°C. The relative densities of the pellets were higher than 90% and these finding were supported by the SEM images. The lattice parameters of the samples increased with the dopant concentration. According to the electrochemical analysis results, the samples with maximum conductivity values were SDC‐20, GDC‐15, NDC‐15, and LDC‐15. The results of the impedance spectroscopy revealed that the SDC‐20 sample exhibited the highest ionic conductivity with a value of 4.29 × 10−2 S/cm at 800°C in air.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.