SummaryThe Male-specific lethal (MSL) complex up-regulates the single male X chromosome to achieve dosage compensation in Drosophila. We have proposed that MSL recognition of specific entry sites on the X is followed by local targeting of active genes marked by H3K36 trimethylation. Here we analyze the role of the MSL3 chromodomain in the second targeting step. Using ChIP-chip analysis, we find that MSL3 chromodomain mutants retain binding to chromatin entry sites, but show a clear disruption in the full pattern of MSL targeting in vivo, consistent with a loss of spreading. Furthermore, when compared to wild-type, chromodomain mutants lack preferential affinity for nucleosomes containing H3K36me3 in vitro. Our results support a model in which activating complexes, like their silencing counterparts, use the nucleosomal binding specificity of their respective chromodomains to spread from initiation sites to flanking chromatin.
A fluorescently labeled protein specifically binding to genes was reproducibly found at the periphery of condensed mitotic fruit fly chromosomes, illustrating preservation of a radial structure between consecutive divisions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.