In this paper, the authors analyze an essential but overlooked area, the aerodynamics of the variable camber morphing wing in transition, where 6% camber changes from 2% to 8% using the two airfoil configurations: NACA2410 and NACA8410. Many morphing works focus on analyzing the aerodynamics of a particular airfoil geometry or already morphed case. The authors mainly address “transitional” or “in-between” aerodynamics to understand the semantics of morphing in-flight and explore the linearity in the relationship when the camber rate is gradually changed. In general, morphing technologies are considered a new paradigm for next-generation aircraft designs with highly agile flight and control and a multidisciplinary optimal design process that enables aircraft to perform substantially better than current ones. Morphing aircraft adjust wing shapes conformally, promoting an enlarged flight envelope, enhanced performance, and higher energy sustainability. Whereas the recent advancement in manufacturing and material processing, composite and smart materials has enabled the implementation of morphing wings, designing a morphing wing aircraft is more challenging than modern aircraft in terms of reliable numerical modeling and aerodynamic analysis. Hence, it is interesting to investigate modeling the transitional aerodynamics of morphing airfoils using a numerical analysis such as computational fluid dynamics. The result shows that the SST k-ω model with transition/curvature correction computes a reasonably accurate value compared with an analytical solution. Additionally, the CL is less sensitive to transition near the leading edge in airfoils. As the camber rate changes/is gradually increased, the aerodynamic behavior correspondingly changes linearly in-between.
This paper aims to numerically validate the aerodynamic performance and benefits of variable camber rate morphing wings, by comparing them to conventional ones with plain flaps, when deflection angles vary, assessing their D reduction or L/D improvement. Many morphing-related research works mainly focus on the design of morphing mechanisms using smart materials, and innovative mechanism designs through materials and structure advancements. However, the foundational work that establishes the motivation of morphing technology development has been overlooked in most research works. All things considered, this paper starts with the verification of the numerical model used for the aerodynamic performance analysis and then conducts the aerodynamic performance analysis of (1) variable camber rate in morphing wings and (2) variable deflection angles in conventional wings. Finally, we find matching pairs for a direct comparison to validate the effectiveness of morphing wings. As a result, we validate that variable camber morphing wings, equivalent to conventional wings with varying flap deflection angles, are improved by at least 1.7% in their L/D ratio, and up to 18.7% in their angle of attack, with α = 8° at a 3% camber morphing rate. Overall, in the entire range of α, which conceptualizes aircrafts mission planning for operation, camber morphing wings are superior in D, L/D, and their improvement rate over conventional ones. By providing the improvement rates in L/D, this paper numerically evaluates and validates the efficiency of camber morphing aircraft, the most important aspect of aircraft operation, as well as the agility and manoeuvrability, compared to conventional wing aircraft.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.