Purpose The recent developments of compact air‐filled ionization chambers for use in small photon beams have raised the needs to address the associated polarity effect. The polarity effect of five compact ionization chambers has been quantified at small field sizes. The origins of the polarity effect are studied experimentally and through Monte‐Carlo simulations. For this purpose, the one‐dimensional lateral dose–response functions were determined using positive and negative chamber's polarity. Monte‐Carlo simulations were performed to study the underlying mechanism of the polarity effect by quantifying the charge imbalance in the collecting electrode and cable. Methods Five novel compact ionization chamber designs have been studied (PTW‐Freiburg: Semiflex 3D 31021, PinPoint 3D 31022 and PinPoint 31023; IBA Dosimetry: Razor chamber CC01‐G and Razor Nano‐chamber CC003). Output ratios were measured down to a nominal field side length of 3 mm using both polarities to evaluate the polarity effect at different field sizes. The small field output correction factors were derived using a scintillator detector as reference. To identify the origins of the polarity effect, slit beam measurements were performed to obtain their lateral dose–response functions. All measurements were performed using three chamber orientations: axial, radial crossplane, and radial inplane. The chambers were modeled according to the manufacturers' blueprints using the Monte‐Carlo package EGSnrc. The charge imbalance due to electrons entering and leaving the inner electrode and cable was studied using an adapted user‐code. Results The output ratios obtained using all five chambers show field size‐dependent polarity effects at small field sizes in the axial orientation, whereas no significant field size dependence of the polarity effect has been observed in the radial orientations. The chambers' lateral dose–response functions reveal that the radiation‐induced charge imbalance in the inner electrode and cable is the main cause of the observed polarity effect at small field sizes. The effect is weakest for the largest PTW 31021 chamber but intensifies for smaller chambers with decreasing sensitive air volume. Consistent results have been obtained between Monte‐Carlo simulations and measurement data. Conclusions Awareness needs to be raised so that the polarity effect of novel compact ionization chambers is appropriately accounted for in small field dosimetry. The results in this work are useful to identify the magnitude of the polarity effect correction and to assist in the decisions on choosing the appropriate chambers and setups during measurements. The origins of the observed polarity effect have been elucidated using the chambers' lateral dose–response functions. The adapted Monte‐Carlo user‐code has been used to compute the radiation‐induced charge imbalance in the chamber's components. It opens the possibility to study the chamber's design with the aim to minimize its polarity effect. Small field output correction factors computed according to...
Purpose Discrepancy between experimental and Monte Carlo simulated dose–response of the microDiamond (mD) detector (type 60019, PTW Freiburg, Germany) at small field sizes has been reported. In this work, the radiation‐induced charge imbalance in the structural components of the detector has been investigated as the possible cause of this discrepancy. Materials and methods Output ratio (OR) measurements have been performed using standard and modified versions of the mD detector at nominal field sizes from 6 mm × 6 mm to 40 mm × 40 mm. In the first modified mD detector (mD_reversed), the type of charge carriers collected is reversed by connecting the opposite contact to the electrometer. In the second modified mD detector (mD_shortened), the detector's contacts have been shortened. The third modified mD detector (mD_noChip) is the same as the standard version but the diamond chip with the sensitive volume has been removed. Output correction factors were calculated from the measured OR and simulated using the EGSnrc package. An adapted Monte Carlo user‐code has been used to study the underlying mechanisms of the field size‐dependent charge imbalance and to identify the detector's structural components contributing to this effect. Results At the smallest field size investigated, the OR measured using the standard mD detector is >3% higher than the OR obtained using the modified mD detector with reversed contact (mD_reversed). Combining the results obtained with the different versions of the detector, the OR have been corrected for the effect of radiation imbalance. The OR obtained using the modified mD detector with shortened contacts (mD_shortened) agree with the corrected OR, all showing an over‐response of less than 2% at the field sizes investigated. The discrepancy between the experimental and simulated output correction factors has been eliminated after accounting for the effect of charge imbalance. Discussions and conclusions The role of radiation‐induced charge imbalance on the dose–response of mD detector in small field dosimetry has been studied and quantified. It has been demonstrated that the effect is significant at small field sizes. Multiple methods were used to quantify the effect of charge imbalance with good agreement between Monte Carlo simulations and experimental results obtained with modified detectors. When this correction is applied to the Monte Carlo data, the discrepancy from experimental data is eliminated. Based on the detailed component analysis using an adapted Monte Carlo user‐code, it has been demonstrated that the effect of charge imbalance can be minimized by modifying the design of the detector's contacts.
The magnetic-field correction factors of compact air-filled ionization chambers have been , investigated experimentally and using Monte Carlo simulations up to 1.5 T. The role of the nonsensitive region within the air cavity and influence of the chamber's construction on its dose response have been elucidated.
The dose response of high-resolution diode-type detectors and the role of their structural components in strong magnetic field
The aim of the present work is to investigate the behavior of two diode-type detectors (PTW microDiamond 60019 and PTW microSilicon 60023) in transverse magnetic field under small field conditions. A formalism based on TRS 483 has been proposed serving as the framework for the application of these high-resolution detectors under these conditions. Measurements were performed at the National Metrology Institute of Germany (PTB, Braunschweig) using a research clinical linear accelerator facility. Quadratic fields corresponding to equivalent square field sizes S between 0.63 and 4.27 cm at the depth of measurement were used. The magnetic field strength was varied up to 1.4 T. Experimental results have been complemented with Monte Carlo simulations up to 1.5 T. Detailed simulations were performed to quantify the small field perturbation effects and the influence of detector components on the dose response. The does response of both detectors decreases by up to 10% at 1.5 T in the largest field size investigated. In S = 0.63 cm, this reduction at 1.5 T is only about half of that observed in field sizes S > 2 cm for both detectors. The results of the Monte Carlo simulations show agreement better than 1% for all investigated conditions. Due to normalization at the machine specific reference field, the resulting small field output correction factors for both detectors in magnetic field k Q clin , Q msr B are smaller than those in the magnetic field-free case, where correction up to 6.2% at 1.5 T is required for the microSilicon in the smallest field size investigated. The volume-averaging effect of both detectors was shown to be nearly independent of the magnetic field. The influence of the enhanced-density components within the detectors has been identified as the major contributors to their behaviors in magnetic field. Nevertheless, the effect becomes weaker with decreasing field size that may be partially attributed to the deficiency of low energy secondary electrons originated from distant locations in small fields.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.