Biological differences between men and women contribute to many sex-specific illnesses and disorders. Historically, it was argued that such differences were largely, if not exclusively, due to gonadal hormone secretions. However, emerging research has shown that some differences are mediated by mechanisms other than the action of these hormone secretions and in particular by products of genes located on the X and Y chromosomes, which we refer to as direct genetic effects. This paper reviews the evidence for direct genetic effects in behavioral and brain sex differences. We highlight the `four core genotypes' model and sex differences in the midbrain dopaminergic system, specifically focusing on the role of Sry. We also discuss novel research being done on unique populations including people attracted to the same sex and people with a cross-gender identity. As science continues to advance our understanding of biological sex differences, a new field is emerging that is aimed at better addressing the needs of both sexes: gender-based biology and medicine. Ultimately, the study of the biological basis for sex differences will improve healthcare for both men and women.
BackgroundThe biological basis for sex differences in brain function and disease susceptibility is poorly understood. Examining the role of gonadal hormones in brain sexual differentiation may provide important information about sex differences in neural health and development. Permanent masculinization of brain structure, function, and disease is induced by testosterone prenatally in males, but the possible mediation of these effects by long-term changes in the epigenome is poorly understood.MethodsWe investigated the organizational effects of testosterone on the DNA methylome and transcriptome in two sexually dimorphic forebrain regions—the bed nucleus of the stria terminalis/preoptic area and the striatum. To study the contribution of testosterone to both the establishment and persistence of sex differences in DNA methylation, we performed genome-wide surveys in male, female, and female mice given testosterone on the day of birth. Methylation was assessed during the perinatal window for testosterone's organizational effects and in adulthood.ResultsThe short-term effect of testosterone exposure was relatively modest. However, in adult animals the number of genes whose methylation was altered had increased by 20-fold. Furthermore, we found that in adulthood, methylation at a substantial number of sexually dimorphic CpG sites was masculinized in response to neonatal testosterone exposure. Consistent with this, testosterone's effect on gene expression in the striatum was more apparent in adulthood.ConclusionTaken together, our data imply that the organizational effects of testosterone on the brain methylome and transcriptome are dramatic and late-emerging. Our findings offer important insights into the long-term molecular effects of early-life hormonal exposure.
Historically, it was thought that the number of X chromosomes plays little role in causing sex differences in traits. Recently, selected mouse models have been used increasingly to compare mice with the same type of gonad but with one versus two copies of the X chromosome. Study of these models demonstrates that mice with one X chromosome can be strikingly different from those with two X chromosomes, when the differences are not attributable to confounding group differences in gonadal hormones. The number of X chromosomes affects adiposity and metabolic disease, cardiovascular ischaemia/reperfusion injury and behaviour. The effects of X chromosome number are likely the result of inherent differences in expression of X genes that escape inactivation, and are therefore expressed from both X chromosomes in XX mice, resulting in a higher level of expression when two X chromosomes are present. The effects of X chromosome number contribute to sex differences in disease phenotypes, and may explain some features of X chromosome aneuploidies such as in Turner and Klinefelter syndromes.
E.V. is partially funded by the DSD Translational Research Network (NICHD 1R01HD068138). M.S.B. is funded by the Neuroendocrinology, Sex Differences and Reproduction training grant (NICHD 5T32HD007228). The authors have no competing interests to disclose.
The mechanisms by which sex differences in the mammalian brain arise are poorly understood, but are influenced by a combination of underlying genetic differences and gonadal hormone exposure. Using a mouse embryonic neural stem cell (eNSC) model to understand early events contributing to sexually dimorphic brain development, we identified novel interactions between chromosomal sex and hormonal exposure that are instrumental to early brain sex differences. RNA-sequencing identified 103 transcripts that were differentially expressed between XX and XY eNSCs at baseline (FDR = 0.10). Treatment with testosterone-propionate (TP) reveals sex-specific gene expression changes, causing 2854 and 792 transcripts to become differentially expressed on XX and XY genetic backgrounds respectively. Within the TP responsive transcripts, there was enrichment for genes which function as epigenetic regulators that affect both histone modifications and DNA methylation patterning. We observed that TP caused a global decrease in 5-methylcytosine abundance in both sexes, a transmissible effect that was maintained in cellular progeny. Additionally, we determined that TP was associated with residue-specific alterations in acetylation of histone tails. These findings highlight an unknown component of androgen action on cells within the developmental CNS, and contribute to a novel mechanism of action by which early hormonal organization is initiated and maintained.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.