Modern political interaction is characterized by strong partisanship and a lack of interest in information sharing and agreement across party lines. It remains largely unclear how such partisan echo chambers arise and how they coevolve with opinion formation. Here, we explore the emergence of these structures through the lens of coevolutionary games. In our model, the payoff of an individual is determined jointly by the magnitude of their opinion, their degree of conformity with their social neighbours and the benefit of having social connections. Each individual can simultaneously adjust their opinion and the weights of their social connections. We present and validate the conditions for the emergence of partisan echo chambers, characterizing the transition from cohesive communities with a consensus to divisive networks with splitting opinions. Moreover, we apply our model to voting records of the US House of Representatives over a timespan of decades to understand the influence of underlying psychological and social factors on increasing partisanship in recent years. Our work helps elucidate how the division of today has come to be and how cohesion and unity could otherwise be attained on a variety of political and social issues.
We use the Geospace Environment Model of Ion‐Neutral Interactions (GEMINI) to create three‐dimensional, time‐dependent simulations of auroral ionospheric parameters in the localized, several 100 km region surrounding auroral arcs observed during a winter 2017 sounding rocket campaign, resolving three‐dimensional features of fine‐scale (km) flow structures in the vicinity of an auroral arc. The three‐dimensional calculations of GEMINI allow (with sufficient driving data) auroral current closure to be investigated without idealizing assumptions of sheet‐like structures or height integrated ionospheres. Datamaps for two nearly sheet‐like arcs are reconstructed from replications of the Isinglass sounding rocket campaign data, and combined with camera‐based particle inversions into a set of driving inputs to run the 3D time‐dependent model. Comparisons of model results to radar density profiles and to in situ magnetometry observations are presented. Slices of volumetric current, flow, and conductance structures from model outputs are used to interpret closure currents in an auroral arc region, and are compared to original in situ measurements for verification. The predominant source of return current region field aligned current closure for these slow time variation events is seen to be from the conductance gradients, including the Hall. The importance of the ∇normalΣH versus ∇normalΣP terms in the determination of the current structure provides a more complicated picture than a previous GEMINI study, which relied predominantly on the divergence of the electric field to determine current structure. Sensitivity of data‐driven model results to details of replication and reconstruction processes are discussed, with improvements outlined for future work.
Charged particle spectrometry is a critical diagnostic to study inertial-confinement-fusion plasmas and high energy density plasmas. The OMEGA Laser Facility has two fixed magnetic charged particle spectrometers (CPSs) to measure MeV-ions. In situ calibration of these spectrometers was carried out using 241Am and 226Ra alpha emitters. The alpha emission spectrum from the sources was measured independently using surface-barrier detectors (SBDs). The energy dispersion and broadening of the CPS systems were determined by comparing the CPS measured alpha spectrum to that of the SBD. The calibration method significantly constrains the energy dispersion, which was previously obtained through the measurement of charged particle fusion products. Overall, a small shift of 100 keV was observed between previous and the calibration done in this work.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.