In this paper we revisit a time series model introduced by McElroy and Politis (2007a) and generalize it in several ways to encompass a wider class of stationary, nonlinear, heavy-tailed time series with long memory. The joint asymptotic distribution for the sample mean and sample variance under the extended model is derived; the associated convergence rates are found to depend crucially on the tail thickness and long memory parameter. A self-normalized sample mean, that concurrently captures the tail and memory behavior, is defined. Its asymptotic distribution is approximated by subsampling without the knowledge of tail or/and memory parameters; a result of independent interest regarding subsampling consistency for certain long-range dependent processes is provided. The subsampling-based confidence intervals for the process mean are shown to have good empirical coverage rates in a simulation study. The influence of block size on the coverage and the performance of a data-driven rule for block size selection are assessed. The methodology is further applied to the series of packet-counts from Ethernet traffic traces.
The paper provides general matrix formulas for minimum mean squared error signal extraction for a finitely sampled time series whose signal and noise components are nonstationary autoregressive integrated moving average processes. These formulas are quite practical; in addition to being simple to implement on a computer, they make it possible to easily derive important general properties of the signal extraction filters. We also extend these formulas to estimates of future values of the unobserved signal, and we show how this result combines signal extraction and forecasting.
The problem of statistical inference for the mean of a time
series with possibly heavy tails is considered. We first show
that the self-normalized sample mean has a well-defined asymptotic
distribution. Subsampling theory is then used to develop
asymptotically correct confidence intervals for the mean
without knowledge (or explicit estimation) either of
the dependence characteristics, or of the tail index. Using
a symmetrization technique, we also construct a distribution
estimator that combines robustness and accuracy: it is higher-order
accurate in the regular case, while remaining consistent in
the heavy tailed case. Some finite-sample simulations confirm
the practicality of the proposed methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.