The paper presents the results of the fatigue testing of heat-treated and thermochemically treated C75 steel with different process parameters in terms of working medium (gas, salt bath), temperature, and time. The experimental program aims to analyze the changes in microstructure under the influence of heat treatment and fatigue resistance. The relationships between the structural changes, the internal stress, and the heat-treated material's mechanical and physical properties can determine the first nano cracks leading to rupture propagation. Based on the experimental values of this paper, we highlight the dependence between the nature of the cracks and the stress to which the specimen was subjected. The paper presents a brief introduction to the fatigue test and the experimental tests performed to determine the fatigue resistance characteristics, the macroscopic analysis of the material, and the crystallographic analysis. The results obtained allow a comparison between the fatigue limits of heat-treated and thermochemically treated C75 steel in gas and salt baths.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.