This work developed a computational process to predict noise radiation from gearboxes. It developed a system-level vibro-acoustic model of an actual gearbox, including the gears, bearings, shafts, and housing structure, and compared the results to experiments. The meshing action of gear teeth causes vibrations to propagate through shafts and bearings to the housing radiating noise. The vibration excitation from the gear mesh and the system response were predicted using finite element and lumped-parameter models. From these results, the radiated noise was calculated using a boundary element model of the housing. Experimental vibration and noise measurements from the gearbox confirmed the computational predictions. This tool was used to investigate the influence of standard rolling element and modified journal bearings on gearbox radiated noise.
This work provides an analytical solution for the nonlinear vibration of gear pairs that exhibit partial and total contact loss. Partial contact loss is where parts of contact lines lose contact although other parts remain in contact. The gear tooth surface modifications admit an arbitrary combination of profile and lead modifications. Modifications are a source of partial contact loss. The analysis also applies for total contact loss. Unlike models in the literature that are excited by static transmission error or time-varying mesh stiffness, the excitation and the nonlinearity are not a priori specified. Instead, the force-deflection function of the gear pair is provided by an independent source, such as a finite element model or Hertz contact formula. The manipulation of the single-degree-offreedom oscillator equation of motion yields the excitation and the nonlinearity that arise from Fourier and Taylor series expansions of the force-deflection function. These expansions capture the essential contact behavior that includes tooth profile and lead modifications as well as the bending and shear flexibility of the gear teeth and gear blanks. The method of multiple scales gives the steady-state dynamic response in terms of a frequency-amplitude relation. Comparisons with gear vibration experiments and simulations from the literature that include spur and helical gears with tooth profile and lead modifications verify the method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.