Lipid disorders and increased oxidative stress may exacerbate some complications of diabetes mellitus. Previous studies have implicated the beneficial effects of some antioxidants, omega-3 polyunsaturated fatty acids (PUFAs), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in the protection of cells from the destructive effect of increased lipids and lipid peroxidation products. This study, therefore, was designed to investigate the effects of cod liver oil (CLO, Lysi Ltd. Island), which comprises mainly vitamin A, PUFAs, EPA and DHA. Effects were monitored on plasma lipids, lipid peroxidation products (MDA) and the activities of antioxidant enzymes, glutathione peroxidase (GSHPx) and catalase in heart, liver, kidney and lung of non-diabetic control and streptozotocin (STZ)-induced-diabetic rats. Two days after STZ-injection (55 mg kg(-1) i.p.), non-diabetic control and diabetic rats were divided randomly into two groups as untreated or treated with CLO (0.5 ml kg(-1) rat per day) for 12 weeks. Plasma glucose, triacylglycerol and cholesterol concentrations were significantly elevated in 12-week untreated-diabetic animals; CLO treatment almost completely prevented these abnormalities in triacylglycerol and cholesterol, but hyperglycaemia was partially controlled. CLO also provided better weight gain in diabetic animals. In untreated diabetic rats, MDA markedly increased in aorta, heart and liver but was not significantly changed in kidney and lung. This was accompanied by a significant increase in both GSHPx and catalase enzyme activities in aorta, heart, and liver of diabetic rats. In kidney and lung, diabetes resulted in reduced catalase while GSHPx was significantly activated. In aorta, heart, and liver, diabetes-induced changes in MDA were entirely prevented by CLO treatment. In the tissues of CLO-treated diabetic animals, GSHPx activity paralleled those of control animals. CLO treatment also caused significant improvements in catalase activities in every tissue of diabetic rats, but failed to affect MDA and antioxidant activity in control animals. The current study suggests that the treatment of diabetic rats with CLO provides better control of glucose and lipid metabolism, allows recovery of normal growth rate, prevents oxidative/peroxidative stress and ameliorates endogenous antioxidant enzyme activities in various tissues. Because CLO contains a plethora of beneficial compounds together, its use for the management of diabetes-induced complications may provide important advantages.
Abnormalities in the metabolism of essential fatty acids and the results of increased oxidative stress have been implicated in cardiovascular disorders observed in diabetes mellitus. This study, therefore, aimed to investigate the effects of cod liver oil (CLO, Lysi Ltd, Iceland), which comprises mainly an antioxidant vitamin A, n:3 polyunsaturated fatty acids (n:3 PUFAs), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), on cardiovascular abnormalities in streptozotocin (STZ)-diabetic rats. Two days after single STZ (55 mg kg(-1), i.p.) or vehicle injection, diabetes was verified by increased blood glucose, and non-diabetic and diabetic rats were left untreated or treated with CLO (0.5 mL kg(-1) daily, by intragastric probing) for 12 weeks. Plasma glucose, triacylglycerol and cholesterol concentrations were significantly elevated in 12-week untreated-diabetic rats; CLO provided better weight gain, entirely prevented the plasma lipid abnormalities, but partially controlled the glycaemia in diabetic rats. In isolated aorta rings, diabetes resulted in increased phenylephrine-induced vasoconstriction and isoprenaline-induced vasorelaxation, impaired endothelium-dependent vasodilatation and unchanged responsiveness to sodium nitroprusside. CLO treatment completely prevented endothelial deficiency, partly corrected the phenylephrine-induced vasoconstriction and did not affect the responses to isoprenaline and sodium nitroprusside in diabetic aorta. Diabetes also produced a marked decrease in the rate of spontaneously beating right atria and a significant increase in basal contractile force of left ventricular papillary muscle. The responsiveness of right atria to the positive chronotropic effect of isoprenaline was significantly decreased in diabetic rats, and was increased in CLO-treated diabetic rats. The positive chronotropic effect of noradrenaline was markedly increased in diabetic atria, but prevented by CLO treatment. Diabetes also resulted in an increased positive inotropic response of papillary muscle to both noradrenaline and isoprenaline, which were prevented by CLO treatment. CLO treatment also resulted in lower tissue sensitivity (pD(2)) to these agonists in diabetic papillary muscle. Ventricular hydroxyproline content was found to be unchanged among the experimental groups. The ultrastructure of diabetic myocardium displayed various degenerations (i.e. intracellular oedema, myofibrillar fragmentation, condensed pleomorphic mitochondria, thick capillary irregular basement membrane, swollen endothelial cells), which were partially prevented by CLO treatment. We conclude that the supplementation with CLO is effective in preventing cardiovascular disorders observed in experimental diabetes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.