Acetamiprid, a selective agonist of nicotinic acetylcholine recetors, is one of the most widely used neonicotinoids. There is limited data about toxicity of acetamiprid on male reproductive system. Therefore, the study aimed to investigate the reproductive toxic potential of acetamiprid in male rats orally treated with acetamiprid with low (12.5 mg/kg) medium (25 mg/kg) or high dose (35 mg/kg) for 90 days. According to our results, sperm concentration and plasma testosterone levels decreased in dose dependent manner. Gonadotropin-releasing hormone (GnRH), follicle-stimulating hormeone (FSH), luteinizing hormone (LH) levels increased at low and medium dose groups and acetamiprid caused lipid peroxidation and glutathione (GSH) depletion in the testes. Histologic examinations revealed that acetamiprid induced apoptosis in medium and high dose groups and proliferation index dramatically decreased in high dose group. In conclusion, acetamiprid caused toxicity on male reproductive system in the high dose. The mechanism of the toxic effect may be associated with oxidative stress, hormonal disruptions and apoptosis. Neonicotinoids are new class of insecticides that act as selective nicotinic acetylcholine receptor (nAChR) agonist selectively in central nervous system of insects 1. Acetamiprid, one of the neonicotinoid insecticides, is commonly used for agricultural and domestic purposes against a large variety of insects 2,3. Acetamiprid has been reported to accumulate in plants and contaminate water and this can pose a potential risk for human health 4,5. Acetamiprid is absorbed easily after oral administration, and it is determined at the highest concentration in the liver, kidney, adrenal and thyroid glands 6. Some researchers showed that acetamiprid caused toxic effects on several organ systems, including the nervous, respiratory, and immune systems in the experimental models 7-9. Furthermore, it has been reported acute poisoning cases after ingestion of acetamiprid in humans 10,11. Acetamiprid has also been reported to induce reproductive toxicity in different species 12,13. The cross-sectional epidemiological study which was conducted in Kavar, (Iran) showed acetamiprid reduced the number of sperm in farmers who exposed to acetamiprid 14. As the use of acetamiprid is increasing, it is very important to identify the toxicity of acetamiprid. Additionally, acetamiprid can be used in combinations with other insecticide because of that, toxic effects and doses of acetamiprid are needed to elucidate well by chronic and subchronic toxicity studies. Acetamiprid has been shown toxic effects on many organs and systems. However, there is no satisfied information on the toxicity potential of acetamiprid on male reproductive system. In this study, it was aimed to examine the effects of acetamiprid on reproductive function of male rats in terms of oxidative stress, apoptosis, hormonal disruptions and histopathological changes. Results Effect of acetamiprid on body and testicular weights. Liver steatosis and slowness of the movem...
Acetamiprid (ACE), a commonly used neonicotinoid insecticide, is correlated with neurological symptoms, immunotoxicity and hepatotoxicity. Cellular stress and damage could play an important role in ACE-induced neurotoxicity; however, its mechanism has not been fully understood. We evaluated the effects of ACE on oxidative stress, endoplasmic reticulum (ER) stress, cellular death, mRNA expression levels of related genes and protein expressions of related molecular mechanisms in SH-SY5Y human neuroblastoma cells. The half maximal inhibition of enzyme activity (IC50) value of ACE was determined as 4.26 mM after 24 h of treatment by MTT assay. We revealed an increase in reactive oxygen species (ROS) production and calcium release. Significant increases were measured in inositol-requiring enzyme 1-alpha (IRE1-α) and binding immunoglobulin protein 90 (GRP90) levels as well as mRNA expression levels of caspase 3, 4 and 9 genes indicating enhanced ER stress. Apoptosis and ER stress-related genes were significantly upregulated at ≥2 mM. Indeed, ACE caused apoptosis and necroptosis while necrosis was not observed. There was a significant increase in the protein level of mitogen-activated protein kinase-8 (MAPK8) at 4 mM of ACE while no change was seen for nuclear factor kappa-B (NF-κB) and tumor necrosis factor-alpha (TNF-α). In conclusion, increased cellular stress markers could be proposed as an underlying mechanism of ACE-induced cell death in neural cells.
Paraoxonase 1 (PON1) enzyme plays a major role in antioxidant defense and protects the cells against reactive species. The most common PON1 Q192R and L55M polymorphisms are responsible for a wide variation of PON1 activity, which showed an up to 13-fold interindividual variation among the same genotype. PON1 genotypes were evaluated with the development of pancreatitis, colorectal cancer, and hypothyroidism in a hospital-based, case-control study. Individuals with rs662 G allele had a two-fold risk of developing hypothyroidism. A weak association was found between rs854560 T allele and pancreatitis. The results were preliminary. Further studies with a larger number and detailed biochemical parameters are needed.
Celastrol is a natural bioactive compound extracted from the medicinal plant Tripterygium wilfordii Hook F. It exhibits immunosuppressive, anti-inflammatory, and antioxidant activities. Cisplatin is a commonly used chemotherapeutic drug in the treatment of a wide range of tumors. Although very effective therapeutically, it can cause nephrotoxicity leading to dose reduction or discontinuation of treatment. This study aims to clarify the therapeutic potential of celastrol in cisplatin-induced nephrotoxicity. The possible protective effects of celastrol pretreatment against cisplatin-induced oxidative stress and genotoxicity were investigated. A rat kidney epithelial cell line NRK-52E was pretreated with the desired concentrations of celastrol (200 nM, 100 nM, and 50 nM) for 24 h. The cells were treated with 50 μM cisplatin for a further 24 h to see whether cisplatin caused the same or less toxicity compared to the vehicle control group. Alkaline comet assay was performed for genotoxicity assessment. Genotoxicity evaluation revealed that celastrol caused a statistically significant reduction in DNA damage. Oxidative stress parameters were evaluated by measuring the glutathione (GSH) and protein carbonyl (PC) levels and also by measuring the enzyme activities of glutathione peroxidase (GPx), glutathione reductase (GR), catalase (CAT) and superoxide dismutase (SOD) enzymes. Celastrol pretreatment increased the GSH content of the cells and ameliorated the protein carbonylation level. Likewise, celastrol pretreatment improved the GR and CAT activities. However, no significant difference was observed in GPx and SOD activities. In the light of these findings, celastrol treatment could be a therapeutic option to reduce cisplatin-induced nephrotoxicity. Further studies are needed for the clarification of its therapeutic potential.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.