Meiosis consists of DNA replication followed by two consecutive nuclear divisions and gametogenesis or spore formation. While meiosis I has been studied extensively, less is known about the regulation of meiosis II. Here we show that Hrr25, the conserved casein kinase 1δ of budding yeast, links three mutually independent key processes of meiosis II. First, Hrr25 induces nuclear division by priming centromeric cohesin for cleavage by separase. Hrr25 simultaneously phosphorylates Rec8, the cleavable subunit of cohesin, and removes from centromeres the cohesin protector composed of shugoshin and the phosphatase PP2A. Second, Hrr25 initiates the sporulation program by inducing the synthesis of membranes that engulf the emerging nuclei at anaphase II. Third, Hrr25 mediates exit from meiosis II by activating pathways that trigger the destruction of M-phase-promoting kinases. Thus, Hrr25 synchronizes formation of the single-copy genome with gamete differentiation and termination of meiosis.
Cells undergoing meiosis produce haploid gametes through one round of DNA replication followed by 2 rounds of chromosome segregation. This requires that cohesin complexes, which establish sister chromatid cohesion during S phase, are removed in a stepwise manner. At meiosis I, the separase protease triggers the segregation of homologous chromosomes by cleaving cohesin's Rec8 subunit on chromosome arms. Cohesin persists at centromeres because the PP2A phosphatase, recruited by the shugoshin protein, dephosphorylates Rec8 and thereby protects it from cleavage. While chromatids disjoin upon cleavage of centromeric Rec8 at meiosis II, it was unclear how and when centromeric Rec8 is liberated from its protector PP2A. One proposal is that bipolar spindle forces separate PP2A from Rec8 as cells enter metaphase II. We show here that sister centromere biorientation is not sufficient to "deprotect" Rec8 at meiosis II in yeast. Instead, our data suggest that the ubiquitin-ligase APC/C removes PP2A from centromeres by targeting for degradation the shugoshin Sgo1 and the kinase Mps1. This implies that Rec8 remains protected until entry into anaphase II when it is phosphorylated concurrently with the activation of separase. Here, we provide further support for this model and speculate on its relevance to mammalian oocytes.
Sexual reproduction requires genome haploidization by the two divisions of meiosis and a differentiation program to generate gametes. Here, we have investigated how sporulation, the yeast equivalent of gamete differentiation, is coordinated with progression through meiosis. Spore differentiation is initiated at metaphase II when a membrane-nucleating structure, called the meiotic plaque, is assembled at the centrosome. While all components of this structure accumulate already at entry into meiosis I, they cannot assemble because centrosomes are occupied by Spc72, the receptor of the c-tubulin complex. Spc72 is removed from centrosomes by a pathway that depends on the polo-like kinase Cdc5 and the meiosis-specific kinase Ime2, which is unleashed by the degradation of Spo13/Meikin upon activation of the anaphasepromoting complex at anaphase I. Meiotic plaques are finally assembled upon reactivation of Cdk1 at entry into metaphase II. This unblocking-activation mechanism ensures that only singlecopy genomes are packaged into spores and might serve as a paradigm for the regulation of other meiosis II-specific processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.