Understanding how natural ecosystems are and will be responding to climate change is one of the primary goals of ecological research. Plant phenology is accepted as one of the most sensitive bioindicators of climate change due to its strong interactions with climate dynamics, and a vast number of studies from all around the world present evidence considering phenological shifts as a response to climatic changes. Land surface phenology (LSP) is also a valuable tool in the absence of observational phenology data for monitoring the aforementioned shift responses. Our aim was to investigate the phenological shifts of Fagus orientalis forests in Turkey by means of daily MODIS surface reflectance data (MOD09GA) for the period between 2002 and 2020. The normalized difference vegetation index (NDVI) was calculated for the entire Turkey extent. This extent was then masked for F. orientalis. These “Fagus pixels” were then filtered by a minimum of 80% spatial and an annual 20% temporal coverage. A combination of two methods was applied to the time series for smoothing and reconstruction and the start of season (SOS), end of season, and length of season parameters were extracted. Trends in these parameters over the 19-year period were analyzed. The results were in concert with the commonly reported earlier SOS pattern, by a Sen’s slope of −0.8 days year−1. Lastly, the relationships between SOS and mean, maximum and minimum temperature, growing degree days (GDD), and chilling hours (CH) were investigated. Results showed that the most significant correlations were found between the mean SOS trend and accumulated CH and accumulated GDD with a base temperature of 2 °C, both for the February–March interval. The immediate need for a phenological observation network in Turkey and its region is discussed.
Biological invasions are a major component of global environmental change with severe ecological and economic consequences. Since eradicating biological invaders is costly and even futile in many cases, predicting the areas under risk to take preventive measures is crucial. Impatiens glandulifera is a very aggressive and prolific invasive species and has been expanding its invasive range all across the Northern hemisphere, primarily in Europe. Although it is currently spread in the east and west of North America (in Canada and USA), studies on its fate under climate change are quite limited compared to the vast literature in Europe. Hybrid models, which integrate multiple modeling approaches, are promising tools for making projections to identify the areas under invasion risk. We developed a hybrid and spatially explicit framework by utilizing MaxEnt, one of the most preferred species distribution modeling (SDM) methods, and we developed an agent-based model (ABM) with the statistical language R. We projected the I. glandulifera invasion in North America, for the 2020–2050 period, under the RCP 4.5 scenario. Our results showed a predominant northward progression of the invasive range alongside an aggressive expansion in both currently invaded areas and interior regions. Our projections will provide valuable insights for risk assessment before the potentially irreversible outcomes emerge, considering the severity of the current state of the invasion in Europe.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.