A computationally efficient model toward real-time monitoring of automotive polymer electrolyte membrane (PEM) fuel cell stacks is developed. Computational efficiency is achieved by spatio-temporal decoupling of the problem, developing a new reduced-order model for water balance across the membrane electrode assembly (MEA), and defining a new variable for cathode catalyst utilization that captures the trade-off between proton and mass transport limitations without additional computational cost. Together, these considerations result in the model calculations to be carried out more than an order of magnitude faster than real time. Moreover, a new iterative scheme allows for simulation of counter-flow operation and makes the model flexible for different flow configurations. The proposed model is validated with a wide range of experimental performance measurements from two different fuel cells. Finally, simulation case studies are presented to demonstrate the prediction capabilities of the model.
This paper presents a 2D, fully coupled and comprehensive transient model that accounts for micro-structural features of various cell layers. The model benefits from state of the art sub-models for reaction kinetics and incorporates the polymer relaxation dynamics. Furthermore, a mixed wettability model is utilized to simulate the transient two phase conditions in the porous layers. The model is validated with transient experimental data under various conditions. A comprehensive simulation study is presented to investigate the impact of operating temperature and relative humidity on the transient response. The effects of cathode Pt loading and operation mode, i.e., current control versus voltage control, are also studied. The cell response is found to be dominated by water transport through its thickness. Additionally, it is found that reducing the Pt loading can influence the performance by changing the water balance in the cell, which has rarely been highlighted in the literature. In particular, at low temperature more water is transported toward the anode when the cathode Pt loading is reduced, since the resistance to water back diffusion is lowered with reduced thickness of the cathode catalyst layer. This trend is reversed at a higher temperature due to increased volumetric heat generation with reduced thickness. The model can help in understanding various transport phenomena and is expected to be useful for inspecting spatio-temporal temperature, potential, and species distributions across the cell's thickness and optimizing the cell design and choice of materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.