It is now evident that G␣ s traffics into cytosol following G protein-coupled receptor activation, and ␣ subunits of some heterotrimeric G-proteins, including G␣ s bind to tubulin in vitro. Nevertheless, many features of G-protein-microtubule interaction and possible intracellular effects of G protein ␣ subunits remain unclear. In this study, several biochemical approaches demonstrated that activated G␣ s directly bound to tubulin and cellular microtubules, and fluorescence microscopy showed that cholera toxin-activated G␣ s colocalized with microtubules. The activated, GTP-bound, G␣ s mimicked tubulin in serving as a GTPase activator for -tubulin. As a result, activated G␣ s made microtubules more dynamic, both in vitro and in cells, decreasing the pool of insoluble microtubules without changing total cellular tubulin content. The amount of acetylated tubulin (an indicator of microtubule stability) was reduced in the presence of G␣ s activated by mutation. Previous studies showed that cholera toxin and cAMP analogs may stimulate neurite outgrowth in PC12 cells. However, in this study, overexpression of a constitutively activated G␣ s or activation of G␣ s with cholera toxin in protein kinase A-deficient PC12 cells promoted neurite outgrowth in a cAMP-independent manner. Thus, it is suggested that activated G␣ s acts as an intracellular messenger to regulate directly microtubule dynamics and promote neurite outgrowth. These data serve to link G-protein signaling with modulation of the cytoskeleton and cell morphology.
The HIV glycoprotein gp120, a neurotoxic HIV glycoprotein that is overproduced and shed by HIV-infected macrophages, is associated with neurological complications of HIV such as distal sensory polyneuropathy, but interactions of gp120 in the peripheral nervous system remain to be characterized. Here, we demonstrate internalization of extracellular gp120 in a manner partially independent of binding to its coreceptor CXCR4 by F11 neuroblastoma cells and cultured dorsal root ganglion neurons. Immunocytochemical and pharmacological experiments indicate that gp120 does not undergo trafficking through the endolysosomal pathway. Instead, gp120 is mainly internalized through lipid rafts in a cholesterol-dependent manner, with a minor fraction being internalized by fluid phase pinocytosis. Experiments using compartmentalized microfluidic chambers further indicate that, after internalization, endocytosed gp120 selectively undergoes retrograde but not anterograde axonal transport from axons to neuronal cell bodies. Collectively, these studies illuminate mechanisms of gp120 internalization and axonal transport in peripheral nervous system neurons, providing a novel framework for mechanisms for gp120 neurotoxicity.
Tubulin modifies G-protein signaling and heterotrimeric G-proteins regulate microtubule assembly. Here we report an interplay among G-protein-coupled receptor and receptor tyrosine kinase (such as nerve growth factor-NGF) signaling systems in PC12 pheochromocytoma cells that resulted in a translocation of Galpha(s), Galpha(i1), and Galpha(o) from cell bodies to cellular processes where they appear to localize with tubulin-containing structures. This relocation appeared to depend on the integrity of microtubules, as it was blocked and reversed by nocodazole. Latrunculin, which promotes actin filament depolymerization, had no effect. Both deconvolution microscopy and immunoprecipitation showed a significant increase of Galpha association with microtubules that was coincident with the extension of "neurites." There were distinctions among the Galpha subtypes, with Galpha(s) showing the most profound NGF-induced colocalization with tubulin. Translocation of Galpha was blocked by agents that inhibit the MAP kinases required for neuronal differentiation, suggesting that G-protein relocation is triggered by the intracellular signals for differentiation. Consistent with this, Galpha in Neuro-2A cells, which spontaneously differentiate, showed a similar translocation coincident with differentiation. Thus, diverse signals that promote neuronal differentiation and changes in cell morphology may use specific G-proteins to evoke cytoskeletal rearrangement.
Background: Activated G␣ s is internalized and increases microtubule dynamics. The role of G␣ s in neuronal growth remains unclear. Results: G␣ s promotes neurite outgrowth in PC12 cells and hippocampal neurons. Conclusion: Neurite outgrowth is at least partially dependent on G␣ s -mediated increases in microtubule dynamics. Significance: G␣ s plays a direct role in neurite formation and branching.
The Janus kinase/STAT pathway has emerged as the paradigm of IFN-induced protection from viral infections. However, the possible participation of other signaling proteins in this protection is not clearly understood. In this report, we demonstrate that activation of phosphatidylinositol 3-kinase (PI3K) by either serum factors or IFNs blocks cell death induced by encephalomyocarditis virus (EMCV) and HSV. This increased resistance to virus-induced cell death does not involve the activation of the STAT pathway and occurs in the presence of normal viral replication. Interestingly, the cell uses two different PI3K regulated pathways to block EMCV- and HSV-induced cell death. The increased sensitivity of p85α−/− embryonic fibroblasts to EMCV-induced cell death is specifically corrected by overexpression of an activated allele of Akt/protein kinase B, but not activated mitogen-activated protein kinase extracellular kinase. Conversely, the augmented sensitivity of p85α−/− cells to HSV-induced cell death was compensated for by expression of an activated form of mitogen-activated protein kinase extracellular kinase, but not by activated Akt/protein kinase B. We conclude from these data that PI3K-activated pathways function in parallel with the Janus kinase/STAT pathway to protect cells from the lethal effects of viruses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.