The COVID-19 pandemic is driven by Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2) that emerged in 2019 and quickly spread worldwide. Genomic surveillance has become the gold standard methodology used to monitor and study this fast-spreading virus and its constantly emerging lineages. The current deluge of SARS-CoV-2 genomic data generated worldwide has put additional pressure on the urgent need for streamlined bioinformatics workflows. Here, we describe a workflow developed by our group to process and analyze large-scale SARS-CoV-2 Illumina amplicon sequencing data. This workflow automates all steps of SARS-CoV-2 reference-based genomic analysis: data processing, genome assembly, PANGO lineage assignment, mutation analysis and the screening of intrahost variants. The pipeline is capable of processing a batch of around 100 samples in less than half an hour on a personal laptop or in less than five minutes on a server with 50 threads. The workflow presented here is available through Docker or Singularity images, allowing for implementation on laptops for small-scale analyses or on high processing capacity servers or clusters. Moreover, the low requirements for memory and CPU cores and the standardized results provided by ViralFlow highlight it as a versatile tool for SARS-CoV-2 genomic analysis.
OGEE is an Online GEne Essentiality database. Gene essentiality is not a static and binary property, rather a context-dependent and evolvable property in all forms of life. In OGEE we collect not only experimentally tested essential and non-essential genes, but also associated gene properties that contributes to gene essentiality. We tagged conditionally essential genes that show variable essentiality statuses across datasets to highlight complex interplays between gene functions and environmental/experimental perturbations. OGEE v3 contains gene essentiality datasets for 91 species; almost doubled from 48 species in previous version. To accommodate recent advances on human cancer essential genes (as known as tumor dependency genes) that could serve as targets for cancer treatment and/or drug development, we expanded the collection of human essential genes from 16 cell lines in previous to 581. These human cancer cell lines were tested with high-throughput experiments such as CRISPR-Cas9 and RNAi; in total, 150 of which were tested by both techniques. We also included factors known to contribute to gene essentiality for these cell lines, such as genomic mutation, methylation and gene expression, along with extensive graphical visualizations for ease of understanding of these factors. OGEE v3 can be accessible freely at https://v3.ogee.info.
The availability of whole-genome sequences and associated multi-omics data sets, combined with advances in gene knockout and knockdown methods, has enabled large-scale annotation and exploration of gene and protein functions in eukaryotes. Knowing which genes are essential for the survival of eukaryotic organisms is paramount for an understanding of the basic mechanisms of life, and could assist in identifying intervention targets in eukaryotic pathogens and cancer. Here, we studied essential gene orthologs among selected species of eukaryotes, and then employed a systematic machine-learning approach, using protein sequence-derived features and selection procedures, to investigate essential gene predictions within and among species. We showed that the numbers of essential gene orthologs comprise small fractions when compared with the total number of orthologs among the eukaryotic species studied. In addition, we demonstrated that machine-learning models trained with subsets of essentiality-related data performed better than random guessing of gene essentiality for a particular species. Consistent with our gene ortholog analysis, the predictions of essential genes among multiple (including distantly-related) species is possible, yet challenging, suggesting that most essential genes are unique to a species. The present work provides a foundation for the expansion of genome-wide essentiality investigations in eukaryotes using machine learning approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.