The 1000 Genomes Project set out to provide a comprehensive description of common human genetic variation by applying whole-genome sequencing to a diverse set of individuals from multiple populations. Here we report completion of the project, having reconstructed the genomes of 2,504 individuals from 26 populations using a combination of low-coverage whole-genome sequencing, deep exome sequencing, and dense microarray genotyping. We characterized a broad spectrum of genetic variation, in total over 88 million variants (84.7 million single nucleotide polymorphisms (SNPs), 3.6 million short insertions/deletions (indels), and 60,000 structural variants), all phased onto high-quality haplotypes. This resource includes >99% of SNP variants with a frequency of >1% for a variety of ancestries. We describe the distribution of genetic variation across the global sample, and discuss the implications for common disease studies.
Background The ChAdOx1 nCoV-19 (AZD1222) vaccine has been approved for emergency use by the UK regulatory authority, Medicines and Healthcare products Regulatory Agency, with a regimen of two standard doses given with an interval of 4–12 weeks. The planned roll-out in the UK will involve vaccinating people in high-risk categories with their first dose immediately, and delivering the second dose 12 weeks later. Here, we provide both a further prespecified pooled analysis of trials of ChAdOx1 nCoV-19 and exploratory analyses of the impact on immunogenicity and efficacy of extending the interval between priming and booster doses. In addition, we show the immunogenicity and protection afforded by the first dose, before a booster dose has been offered. Methods We present data from three single-blind randomised controlled trials—one phase 1/2 study in the UK (COV001), one phase 2/3 study in the UK (COV002), and a phase 3 study in Brazil (COV003)—and one double-blind phase 1/2 study in South Africa (COV005). As previously described, individuals 18 years and older were randomly assigned 1:1 to receive two standard doses of ChAdOx1 nCoV-19 (5 × 10 10 viral particles) or a control vaccine or saline placebo. In the UK trial, a subset of participants received a lower dose (2·2 × 10 10 viral particles) of the ChAdOx1 nCoV-19 for the first dose. The primary outcome was virologically confirmed symptomatic COVID-19 disease, defined as a nucleic acid amplification test (NAAT)-positive swab combined with at least one qualifying symptom (fever ≥37·8°C, cough, shortness of breath, or anosmia or ageusia) more than 14 days after the second dose. Secondary efficacy analyses included cases occuring at least 22 days after the first dose. Antibody responses measured by immunoassay and by pseudovirus neutralisation were exploratory outcomes. All cases of COVID-19 with a NAAT-positive swab were adjudicated for inclusion in the analysis by a masked independent endpoint review committee. The primary analysis included all participants who were SARS-CoV-2 N protein seronegative at baseline, had had at least 14 days of follow-up after the second dose, and had no evidence of previous SARS-CoV-2 infection from NAAT swabs. Safety was assessed in all participants who received at least one dose. The four trials are registered at ISRCTN89951424 (COV003) and ClinicalTrials.gov , NCT04324606 (COV001), NCT04400838 (COV002), and NCT04444674 (COV005). Findings Between April 23 and Dec 6, 2020, 24 422 participants were recruited and vaccinated across the four studies, of whom 17 178 were included in the primary analysis (8597 receiving ChAdOx1 nCoV-19 and 8581 receiving control vaccine). The data cutoff for these analyses was Dec 7, 2020. 332 NAAT-positive infections met the primary endpoint of symptomatic infection more t...
Genetic variation in NRAMP1 affects susceptibility to tuberculosis in West Africans.
SummaryBackgroundMalaria is a major cause of morbidity and mortality in Africa. International effort and funding for control has been stepped up, with substantial increases from 2003 in the delivery of malaria interventions to pregnant women and children younger than 5 years in The Gambia. We investigated the changes in malaria indices in this country, and the causes and public-health significance of these changes.MethodsWe undertook a retrospective analysis of original records to establish numbers and proportions of malaria inpatients, deaths, and blood-slide examinations at one hospital over 9 years (January, 1999–December, 2007), and at four health facilities in three different administrative regions over 7 years (January, 2001–December, 2007). We obtained additional data from single sites for haemoglobin concentrations in paediatric admissions and for age distribution of malaria admissions.FindingsFrom 2003 to 2007, at four sites with complete slide examination records, the proportions of malaria-positive slides decreased by 82% (3397/10861 in 2003 to 337/6142 in 2007), 85% (137/1259 to 6/368), 73% (3664/16932 to 666/11333), and 50% (1206/3304 to 336/1853). At three sites with complete admission records, the proportions of malaria admissions fell by 74% (435/2530 to 69/1531), 69% (797/2824 to 89/1032), and 27% (2204/4056 to 496/1251). Proportions of deaths attributed to malaria in two hospitals decreased by 100% (seven of 115 in 2003 to none of 117 in 2007) and 90% (22/122 in 2003 to one of 58 in 2007). Since 2004, mean haemoglobin concentrations for all-cause admissions increased by 12 g/L (85 g/L in 2000–04 to 97 g/L in 2005–07), and mean age of paediatric malaria admissions increased from 3·9 years (95% CI 3·7–4·0) to 5·6 years (5·0–6·2).InterpretationA large proportion of the malaria burden has been alleviated in The Gambia. Our results encourage consideration of a policy to eliminate malaria as a public-health problem, while emphasising the importance of accurate and continuous surveillance.FundingUK Medical Research Council.
The active metabolite of vitamin D, 1,25 dihydroxyvitamin D3, is an important immunoregulatory hormone [1]. Its effects are exerted by interaction with the vitamin D receptor, which is present on human monocytes and activated T and B lymphocytes. Variation in the vitamin D receptor gene was typed in 2015 subjects from large case-control studies of three major infectious diseases: tuberculosis, malaria, and hepatitis B virus. Homozygotes for a polymorphism at codon 352 (genotype tt) were significantly underrepresented among those with tuberculosis (chi2=6.22, 1 df, P=. 01) and persistent hepatitis B infection (chi2=6.25, 1 df, P=.01) but not in subjects with clinical malaria compared with the other genotypes. Therefore, this genetic variant, which predisposes to low bone mineral density in many populations, may confer resistance to certain infectious diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.