Plant growth promoting rhizobacteria (PGPR) shows an important role in the sustainable agriculture industry. The increasing demand for crop production with a significant reduction of synthetic chemical fertilizers and pesticides use is a big challenge nowadays. The use of PGPR has been proven to be an environmentally sound way of increasing crop yields by facilitating plant growth through either a direct or indirect mechanism. The mechanisms of PGPR include regulating hormonal and nutritional balance, inducing resistance against plant pathogens, and solubilizing nutrients for easy uptake by plants. In addition, PGPR show synergistic and antagonistic interactions with microorganisms within the rhizosphere and beyond in bulk soil, which indirectly boosts plant growth rate. There are many bacteria species that act as PGPR, described in the literature as successful for improving plant growth. However, there is a gap between the mode of action (mechanism) of the PGPR for plant growth and the role of the PGPR as biofertilizer-thus the importance of nano-encapsulation technology in improving the efficacy of PGPR. Hence, this review bridges the gap mentioned and summarizes the mechanism of PGPR as a biofertilizer for agricultural sustainability.
Advanced energy storage technology based on phase change materials (PCMs) has received considerable attention over the last decade for used in various applications. Buildings are the major industry which needs this advanced technology to improve internal building comfort and the reduction of energy usage. However, the main barrier which affects the application of this technology in building sector is the method to incorporate the PCMs into the building materials and the method used to measure the effectiveness of the PCMs as TES in building. In this paper, a review on the TES systems based on PCMs, their thermo-physical and chemical properties, and potential application as TES for buildings have been carried out. The methodologies for the incorporation of PCMs into the building materials, and their thermal performance are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.