A paraxial solution to the coaxial holographic storage algorithm is proposed based on the scalar diffraction theory and a VOHIL model (volume hologram being an integrator of the lights emitted from elementary light sources), which can give insight into the optical characteristics of the collinear holographic storage system in an effective way, including the point spread function and shift selectivity. The paraxial solution shows that the reference pattern is the key issue in the point spread function. Thus, the bit error rate of the system can be improved by changing the reference pattern. The proposed solution will be useful in the design of a new reference pattern to perform a high-quality readout pattern in the coaxial holographic storage system.
This study proposes a slim planar apparatus for converting nonpolarized light from a light-emitting diode (LED) into an ultra-collimated linearly polarized beam uniformly emitted from its top surface. The apparatus was designed based on a folded-bilayer configuration comprising a light-mixing collimation element, polarization conversion element, and polarization-preserving light guide plate (PPLGP) with an overall thickness of 5 mm. Moreover, the apparatus can be extended transversally by connecting multiple light-mixing collimation elements and polarization conversion elements in a side-by-side configuration to share a considerably wider PPLGP, so the apparatus can have theoretically unlimited width. The simulation results indicate that the proposed apparatus is feasible for the maximal backlight modules in 39-inch liquid crystal panels. In the case of an apparatus with a 480 × 80 mm emission area and two 8-lumen LED light sources, the average head-on polarized luminance and spatial uniformity over the emission area was 5000 nit and 83%, respectively; the vertical and transverse angular distributions of the emitting light were only 5° and 10°, respectively. Moreover, the average degree of polarization and energy efficiency of the apparatus were 82% and 72%, respectively. As compared with the high-performance ultra-collimated nonpolarized backlight module proposed in our prior work, not only did the apparatus exhibit outstanding optical performance, but also the highly polarized light emissions actually increased the energy efficiency by 100%.
This study proposed a planar solar concentrator featuring alignment-free total-internal-reflection (TIR) collectors and an innovative compound tracker. The compound tracker, combining a mechanical single-axis tracker and scrollable prism sheets, can achieve a performance on a par with dual-axis tracking while reducing the cost of the tracking system and increasing its robustness. The alignment-free TIR collectors are assembled on the waveguide without requiring alignment, so the planar concentrator is relatively easily manufactured and markedly increases the feasibility for use in large concentrators. Further, the identical TIR collector is applicable to various-sized waveguide slab without requiring modification, which facilitates flexibility regarding the size of the waveguide slab. In the simulation model, the thickness of the slab was 2 mm, and its maximal length reached 6 m. With an average angular tolerance of ±0.6°, and after considering both the Fresnel loss and the angular spread of the sun, the simulation indicates that the waveguide concentrator of a 1000-mm length provides the optical efficiencies of 62-77% at the irradiance concentrations of 387-688, and the one of a 2000-mm length provides the optical efficiencies of 52-64.5% at the irradiance concentrations of 645-1148. Alternatively, if a 100-mm horizontally staggered waveguide slab is collocated with the alignment-free TIR collectors, the optical efficiency would be greatly improved up to 91.5% at an irradiance concentration of 1098 (C(geo) = 1200X).
In this paper, we proposed a novel optical film 'Collimation Film with Equivalent Focal Reflective Aperture' (CFEFRA) that can collocate with the proper light guide plate (LGP) to provide a highly collimated planar light source (HCPLS) that not only has high intensity peak but also good uniformity. The CFEFRA has micro-cylindrical lenses and inverted-prism-like micro-teeth on its upper surface and lower surface, respectively. The lower micro-teeth that are aligned with the upper lenses can deflect the light emitting from the LGP at large declination into the normal, and then the deflected light with transverse fan-out is further converged by the upper lens to become the collimated light. The exact alignment between the upper and lower micro-structures is fulfilled by the method 'auto-secure-alignment by focusing of a collimated exposure beam'. The vertical and horizontal full width at half maximum (FWHM) of angular intensity of the HCPLS for the optimal case are of 14 and 6 degrees, respectively. Moreover, it still has high optical efficiency with light output of over 90% despite the resultant emitting light is such collimated. Most importantly, CFEFRA just needs to collocate with a relatively low-cost and easily-manufactured LGP so the HCPLS adopting the CFEFRA can be extended for large-sized application. Both optical model and experimental samples are demonstrated in this paper, and the simulation results are consistent with the experimental results. The consistency proves our design concept and optical model are convincible and feasible.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.