Tyrosine kinase inhibitors (TKIs) elicit high response rates among individuals with kinase-driven malignancies, including chronic myeloid leukemia (CML) and epidermal growth factor receptor-mutated non-small-cell lung cancer (EGFR NSCLC). However, the extent and duration of these responses are heterogeneous, suggesting the existence of genetic modifiers affecting an individual's response to TKIs. Using paired-end DNA sequencing, we discovered a common intronic deletion polymorphism in the gene encoding BCL2-like 11 (BIM). BIM is a pro-apoptotic member of the B-cell CLL/lymphoma 2 (BCL2) family of proteins, and its upregulation is required for TKIs to induce apoptosis in kinase-driven cancers. The polymorphism switched BIM splicing from exon 4 to exon 3, which resulted in expression of BIM isoforms lacking the pro-apoptotic BCL2-homology domain 3 (BH3). The polymorphism was sufficient to confer intrinsic TKI resistance in CML and EGFR NSCLC cell lines, but this resistance could be overcome with BH3-mimetic drugs. Notably, individuals with CML and EGFR NSCLC harboring the polymorphism experienced significantly inferior responses to TKIs than did individuals without the polymorphism (P = 0.02 for CML and P = 0.027 for EGFR NSCLC). Our results offer an explanation for the heterogeneity of TKI responses across individuals and suggest the possibility of personalizing therapy with BH3 mimetics to overcome BIM-polymorphism-associated TKI resistance.
The cyclin-dependent kinase (CDK) inhibitor p27 is degraded in late G1 phase by the ubiquitin pathway, allowing CDK activity to drive cells into S phase. Ubiquitinylation of p27 requires its phosphorylation at Thr 187 (refs 3, 4) and subsequent recognition by S-phase kinase associated protein 2 (Skp2; refs 5-8), a member of the F-box family of proteins that associates with Skp1, Cul-1 and ROC1/Rbx1 to form an SCF ubiquitin ligase complex. However, in vitro ligation of p27 to ubiquitin could not be reconstituted by known purified components of the SCFSkp2 complex. Here we show that the missing factor is CDK subunit 1 (Cks1), which belongs to the highly conserved Suc1/Cks family of proteins that bind to some CDKs and phosphorylated proteins and are essential for cell-cycle progression. Human Cks1, but not other members of the family, reconstitutes ubiquitin ligation of p27 in a completely purified system, binds to Skp2 and greatly increases binding of T187-phosphorylated p27 to Skp2. Our results represent the first evidence that an SCF complex requires an accessory protein for activity as well as for binding to its phosphorylated substrate.
A tumor suppressor function has been attributed to RUNX3, a member of the RUNX family of transcription factors. Here, we examined alterations in the expression of three members, RUNX1, RUNX2, and RUNX3, and their interacting partner, CBFb, in breast cancer. Among them, RUNX3 was consistently underexpressed in breast cancer cell lines and primary tumors. Fifty percent of the breast cancer cell lines (n = 19) showed hypermethylation at the promoter region and displayed significantly lower levels of RUNX3 mRNA expression (P < 0.0001) and protein (P < 0.001). In primary Singaporean breast cancers, 9 of 44 specimens showed undetectable levels of RUNX3 by immunohistochemistry. In 35 of 44 tumors, however, low levels of RUNX3 protein were present. Remarkably, in each case, protein was mislocalized to the cytoplasm. In primary tumors, hypermethylation of RUNX3 was observed in 23 of 44 cases (52%) and was undetectable in matched adjacent normal breast epithelium. Mislocalization of the protein, with or without methylation, seems to account for RUNX3 inactivation in the vast majority of the tumors. In in vitro and in vivo assays, RUNX3 behaved as a growth suppressor in breast cancer cells. Stable expression of RUNX3 in MDA-MB-231 breast cancer cells led to a more cuboidal phenotype, significantly reduced invasiveness in Matrigel invasion assays, and suppressed tumor formation in immunodeficient mice. This study provides biological and mechanistic insights into RUNX3 as the key member of the family that plays a role in breast cancer. Frequent protein mislocalization and methylation could render RUNX3 a valuable marker for early detection and risk assessment.
Previous studies have shown that the cyclin-dependent kinase (Cdk) inhibitor p27Kip1 is targeted for degradation by an SCF Skp2 ubiquitin ligase complex and that this process requires Cks1, a member of the highly conserved Suc1/Cks family of cell cycle regulatory proteins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.