Due to numerous mutations in the spike protein, the SARS-CoV-2 variant of concern Omicron (B.1.1.529) raises serious concerns since it may significantly limit the antibody-mediated neutralization and increase the risk of reinfections. While a rapid increase in the number of cases is being reported worldwide, until now there has been uncertainty about the efficacy of vaccinations and monoclonal antibodies. Our in vitro findings using authentic SARS-CoV-2 variants indicate that in contrast to the currently circulating Delta variant, the neutralization efficacy of vaccine-elicited sera against Omicron was severely reduced highlighting T-cell mediated immunity as essential barrier to prevent severe COVID-19. Since SARS-CoV-2 Omicron was resistant to casirivimab and imdevimab genotyping of SARS-CoV-2 may be needed before initiating mAb treatment. Variant-specific vaccines and mAb agents may be required to treat Omicron and other emerging variants of concern.
SignificanceCircular RNAs (circRNAs) play critical physiologic functions, but it is not known whether human DNA viruses express circRNAs. We surveyed Epstein−Barr virus (EBV) and Kaposi’s sarcoma herpesvirus (KSHV) tumors and cell lines, and found specific circRNAs expressed from both viruses. EBV circular BamHI A rightward transcripts (circBARTs) were expressed in all EBV tumor latency forms, including all EBV-infected posttransplant lymphoproliferative disease tumors tested, whereas EBV circBHLF1 and circLMP2 were more variably expressed. KSHV expressed circvIRF4 constitutively in primary effusion lymphoma cell lines, while the polyadenylated nuclear locus promiscuously generated variable, inducible, and bidirectional circRNAs. Tumor virus circRNAs can be long-lived, unique tumor biomarkers that may also open new research opportunities into understanding how these viruses cause cancer.
Due to globally rising numbers of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections, resources for real-time reverse-transcription polymerase chain reaction (rRT-PCR)-based testing have been exhausted. In order to meet the demands of testing and reduce transmission, SARS-CoV-2 antigen-detecting rapid diagnostic tests (Ag-RDTs) are being considered. These tests are fast, inexpensive, and simple to use, but whether they detect potentially infectious cases has not been well studied. We evaluated three lateral flow assays (RIDA®QUICK SARS-CoV-2 Antigen (R-Biopharm), SARS-CoV-2 Rapid Antigen Test (Roche)), and NADAL® COVID-19 Ag Test (Nal von Minden GmbH, Regensburg, Germany) and one microfluidic immunofluorescence assay (SARS-CoV-2 Ag Test (LumiraDx GmbH, Cologne, Germany)) using 100 clinical samples. Diagnostic rRT-PCR and cell culture testing as a marker for infectivity were performed in parallel. The overall Ag-RDT sensitivity for rRT-PCR-positive samples ranged from 24.3% to 50%. However, for samples with a viral load of more than 6 log10 RNA copies/mL (22/100), typically seen in infectious individuals, Ag-RDT positivity was between 81.8% and 100%. Only 51.6% (33/64) of the rRT-PCR-positive samples were infectious in cell culture. In contrast, three Ag-RDTs demonstrated a more significant correlation with cell culture infectivity (61.8–82.4%). Our findings suggest that large-scale SARS-CoV-2 Ag-RDT-based testing can be considered for detecting potentially infective individuals and reducing the virus spread.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.