The need for high-volume data is one of the challenging requirements of the deep learning methods and it makes it harder to apply deep learning algorithms to domains in which the data sources are limited, in other words small. These domains may vary from medical diagnosis to satellite imaging. The performances of the deep learning methods on small datasets can be improved by the approaches such as data augmentation, ensembling, and transfer learning. In this study, we propose a new approach that utilizes transfer learning and ensemble methods to increase the accuracy rates of convolutional neural networks for classification tasks on small data sets. To this end, we generate different-sized sub-networks by fragmenting an existing large pre-trained network then gather those networks to form an ensemble.For ensemble scoring, we also suggest two new methods. Conducted experiments with the proposed technique, on a randomly sampled Cifar10 small subset dataset, reveals promising results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.