Conventional retail store inventory management systems rely on stockroom actions. However, especially in big scale retail stores, a certain amount of goods is placed on the display shelves. The items placed on the display shelves are not counted until their tags are identified by a cash register and marked as sold in the inventory management system. In this study, we propose a smart shelf that is capable of counting the specific items placed on it by detecting the location and the weight of the items. Our approach assumes that specific items in a retail store are placed in a specified location on each shelf, which is a widely preferred approach. The identified product information is then transferred to the inventory management system through the local network connection, and products on the display shelves can be counted in real time. The results show that the location and weight of the items can be identified with remarkable accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.