Wave energy is substantial as a resource, and its potential to significantly contribute to the existing energy mix has been identified. However, the commercial utilization of wave energy is still very low. This paper reviewed the background of wave energy harvesting technology, its evolution, and the present status of the industry. By covering the theoretical formulations, wave resource characterization methods, hydrodynamics of wave interaction with the wave energy converter, and the power takeoff and electrical systems, different challenges were identified and discussed. Solutions were suggested while discussing the challenges in order to increase awareness and investment in wave energy industry as a whole.
The level of awareness about ocean wave energy as a viable source of useful energy has been increasing recently. Different concepts and methods have been suggested by many researchers to harvest ocean wave energy. This paper reviews and compares the efficiencies and power performance of different wave energy converters. The types of analyses used in deriving the reported efficiencies are identified, and the stage of the power conversion processes at which the efficiencies were determined is also identified. In order to find a common way to compare the efficiencies of different technologies, the hydrodynamic efficiency in relation to the characteristic width of the wave energy converters and the wave resource potential are chosen in this paper. The results show that the oscillating body systems have the highest ratio in terms of the efficiency per characteristic width, and overtopping devices have the lowest. In addition, with better understanding of the devices' dynamics, the efficiencies of the newer oscillating water column and body systems would increase as the potential wave energy level increases, which shows that those newer designs could be suitable for more potential locations with large variations in wave energy potentials. At last, discussion about the cost of ocean wave energy is presented as well.
Different concepts and methods have been proposed and developed by many researchers to harvest ocean wave energy. In this paper, a new self-adjustable wave energy converter concept is presented, which changes its inertia through ballasting and de-ballasting using sea water. The trigger of ballasting and de-ballasting is controlled by the critical wave period. Therefore, the self-adjustable wave energy converter is able to interact at resonance with the ocean waves at two different resonant bandwidths. Ten years real wave data with hourly resolution from a selected location in Gulf of Mexico was used in this paper to decide the critical wave period and other parameters of the wave energy converter. The annual energy performance of the self-adjustable wave energy converter was also estimated and compared with non-adjustable wave energy converter with similar dimensions. Structural analysis including both static and fatigue analysis was performed on the self-adjustable wave energy converter to determine its survivability with the real ocean wave data. The results show that the self-adjustable wave energy converter is able to capture more energy than non-adjustable wave energy converter, and is able to survive during the hash ocean wave conditions.
Although theoretical available wave energy is higher than most of ocean energy sources, the commercial utilization of wave energy is much slower than other ocean energy sources. The difficulty of integration with the electrical grid system and the challenges of the installation, operation and maintenance of large energy generation and transmission systems are the major reasons. Even though there are successfully tested models of wave energy converters, the fact that wave energy is directly affected by wave height and wave period makes the actual wave energy output with high variation and difficult to be predicted. And most of the previous studies on wave energy and its utilization have focused on the large scale energy production that can be integrated into a power grid system. In this paper, the authors identify and discuss stand-alone wave energy converter systems and facilities that are not connected to the electricity grid with focus on small scale wave energy systems as potential source of energy. For the proper identification, qualification and quantification of wave energy resource potential, wave properties such as wave height and period need to be characterized. This is used to properly determine and predict the probability of the occurrence of these wave properties at particular locations, which enables the choice of product design, installation, operation and maintenance to effectively capture wave energy. Meanwhile, the present technologies available for wave energy converters can be limited by location (offshore, nearshore or shoreline). Therefore, the potential applications of small scale stand-alone wave energy converter are influenced by the demand, location of the need and the appropriate technology to meet the identified needs. The paper discusses the identification of wave energy resource potentials, the location and appropriate technology suitable for small scale wave energy converter. Two simplified wave energy converter designs are created and simulated under real wave condition in order to estimate the energy production of each design.
For a heaving point absorber to perform optimally, it has to be designed to resonate to the prevailing ocean wave period. Hence, it is important to make the ocean wave data analysis to be as accurate as possible. In this study, existing wave condition data is used to investigate the effect of the temporal resolution (daily vs. hourly) of wave data on the design of the device and power capture. The temporal resolution effect on the estimation of ocean wave resource theoretical potential is also investigated. Results show that the temporal resolution variation of the ocean wave data affects the design of the device and its power capture, but the theoretical power resource assessment is not significantly affected. The device designed for the Gulf of Mexico is also analyzed with wave condition in Oregon, which has about 40 times the wave resource theoretical potential compared to the Gulf of Mexico. The results confirmed that a device should be designed for a specific location as the device performed better in the Gulf of Mexico, which has much less ocean wave resource theoretical potential. At last, the effect of the design, diameter and season (summer and winter) on the power output of the device is also investigated using statistical hypothesis testing methods. The results show that the power capture of a device is significantly affected by these parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.