Electrical stimulation of circumscribed areas of the pontine and medullary reticular formation inhibits muscle tone in cats. In this report, we present an analysis of the anatomical distribution of atonia-inducing stimulation sites in the brain stem of the rat. Muscle atonia could be elicited by electrical stimulation of the nuclei reticularis pontis oralis and caudalis in the pons as well as the nuclei gigantocellularis, gigantocellularis alpha, gigantocellularis ventralis, and paragigantocellularis dorsalis in the medulla of decerebrate rats. This inhibitory effect on muscle tone was a function of the intensity and frequency of the electrical stimulation. Average latencies of muscle-tone suppressions elicited by electrical stimulation of the pontine reticular formation were 11.02 +/- 2.54 and 20.49 +/- 3.39 (SD) ms in the neck and in the hindlimb muscles, respectively. Following medullary stimulation, these latencies were 11.29 +/- 2.44 ms in the neck and 18.87 +/- 2. 64 ms in the hindlimb muscles. Microinjection of N-methyl-D-aspartate (NMDA, 7 mM/0.1 microliter) agonists into the pontine and medullary inhibitory sites produced muscle-tone facilitation, whereas quisqualate (10 mM/0.1 microliter) injection induced an inhibition of muscle tone. NMDA-induced muscle tone change had a latency of 31.8 +/- 35.3 s from the pons and 10.5 +/- 0. 7 s from the medulla and a duration of 146.7 +/- 95.2 s from the pons and 55.5 +/- 40.4 s from the medulla. The latency of quisqualate (QU)-induced reduction of neck muscle tone was 30.1 +/- 37.9 s after pontine and 39.5 +/- 21.8 s after medullary injection. The duration of muscle-tone suppression induced by QU injection into the pons and medulla was 111.5 +/- 119.2 and 169.2 +/- 145.3 s. Smaller rats (8 wk old) had a higher percentage of sites producing muscle-tone inhibition than larger rats (16 wk old), indicating an age-related change in the function of brain stem inhibitory systems. The anatomical distribution of atonia-related sites in the rat has both similarities and differences with the distribution found in the cat, which can be explained by the distinct anatomical organization of the brain stem in these two species.
Sleep and local field potential (LFP) characteristics were addressed during the reproductive cycle in female rats using long-term (60–70 days) recordings. Changes in homeostatic sleep regulation was tested by sleep deprivation (SDep). The effect of mother-pup separation on sleep was also investigated during the postpartum (PP) period. First half of the pregnancy and early PP period showed increased wakefulness (W) and higher arousal indicated by elevated beta and gamma activity. Slow wave sleep (SWS) recovery was suppressed while REM sleep replacement was complete after SDep in the PP period. Pup separation decreased maternal W during early-, but increased during middle PP while did not affect during late PP. More W, less SWS, higher light phase beta activity but lower gamma activity was seen during the post-weaning estrus cycle compared to the virgin one. Maternal sleep can be governed by the fetuses/pups needs and their presence, which elevate W of mothers. Complete REM sleep- and incomplete SWS replacement after SDep in the PP period may reflect the necessity of maternal REM sleep for the offspring while SWS increase may compete with W essential for maternal care. Maternal experience may cause sleep and LFP changes in the post-weaning estrus cycle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.