The aim of this paper is to propose ecological thermal insulation materials that meet the goals of sustainability but also fulfill the imposed thermal performance requirements. This paper studies new composite materials based on sheep wool from the perspective of thermal conductivity. The composites were prepared using two types of binder: acrylic-polyurethane resin and natural rubber latex, which were applied to the wool fibres through different methods and percentages. Based on the obtained results of thermal conductivity, two types of samples were selected for further analysis, which aimed to determine the microstructure, chemical composition, water absorption, attack of microorganisms, water vapour permeability, hygrothermal adsorption characteristics and sound absorption of the samples. In order to analyse the variation of thermal conductivity, the following parameters were taken into account: thickness, density, type of binder and percentage of binder. Following the obtained results, it was observed that the value of the thermal conductivity of the samples varies between 0.0324 and 0.0436 W/mK. It was found that all the samples prepared and analysed in this study fulfil the national criteria for the thermal performance of thermal insulation material. After conducting the in-depth analysis of the two selected sample types, it was concluded that both materials have good sound absorption characteristics over the considered frequency range. In addition, as it was expected from the natural fibres, the samples had low resistance against the attack of microorganisms and water-related tests.
The aim of this paper is to propose a novel sandwich panel, which would be suitable for sound absorption and airborne sound insulation, used as applied cladding or independent lightweight partition wall. As far as the authors are concerned, this is the first sheep wool-based sandwich panel using only natural materials. The structure was prepared using hydrated lime-based composite face sheets and a sheep wool-based core. Several parameters of the sandwich panel were determined, including sound absorption coefficient, airborne sound insulation, thermal conductivity, thermal resistance, compressive strength, and bending strength, respectively. The results indicate that the maximum sound absorption value of 0.903 was obtained at the frequency of 524 Hz in the case of the unperforated sample, 0.822 at 536 Hz in the case of the sample with 10% perforations, 0.780 at 3036 Hz in the case of the sample with 20% perforations, and 0.853 at 3200 Hz in the case of the sample with 30% perforations. The registered airborne sound insulation index of the panel was 38 dB. Based on the obtained data, it can be concluded that the studied panel recorded comparable values with other synthetic noise control solutions, which are suitable as applied cladding or an independent lightweight partition wall, with good acoustic properties.
A field experiment was conducted to investigate the extent of chloride intrusion along the construction joint between later-placed, cement-based grout and concrete in instrumented precast concrete breakwater elements (dolosse). Experimental blocks were cast, grouted, and submerged in seawater. Upon retrieval, the construction joint between the grout and the concrete was evaluated for chloride intrusion from seawater using X-ray diffraction (XRD) and energy dispersive X-ray analysis (EDX) of scanning electron microscope (SEM) samples. No detectable intrusion occurred, indicating that the planned instrumentation of dolosse in a field experiment should be secure from significant seawater intrusion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.